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INTRODUCTION

Theorem (Das, Marin)

CK and IK do not prove the same ♢-free formulas:
▶ CK ̸⊢ ¬¬□⊥ → □⊥, and
▶ IK ⊢ ¬¬□⊥ → □⊥

Theorem (P.)

CKB and IKB prove the same formulas.

Theorem (P.)

Over IEL, ♢φ is equivalent to ¬¬φ.
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THE LOGIC CK

CK is the least set of formulas containing:
▶ intuitionistic tautologies;
▶ K□ := □(φ→ ψ) → (□φ→ □ψ);
▶ K♢ := □(φ→ ψ) → (♢φ→ ♢ψ);

and closed under

(Nec)
φ

□φ
and (MP)

φ φ→ ψ

ψ
.
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THE LOGICS CKB, IK, AND IKB

Let
▶ FS := (♢φ→ □ψ) → □(φ→ ψ);
▶ DP := ♢(φ ∨ ψ) → ♢φ ∨ ♢ψ;
▶ N := ¬♢⊥;
▶ B□ := P → □♢P; and
▶ B♢ := ♢□P → P.

Then:
▶ CKB := CK + {B□,B♢};
▶ IK := CK + {FS,DP,N}; and
▶ IKB := IK + {B□,B♢} = CKB + {FS,DP,N}.
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CK-MODELS

A CK-model is a tuple M = ⟨W,W⊥,⪯,R,V⟩ where:
▶ W is the set of possible worlds;
▶ W⊥ ⊆ W is the set of fallible worlds;
▶ the intuitionistic relation ⪯ is a reflexive and transitive

relation over W;
▶ the modal relation R is a relation over W;
▶ V : Prop → P(W) is a valuation function.

We require:
▶ if w ⪯ v and w ∈ V(P), then v ∈ V(P);
▶ for all P ∈ Prop, W⊥ ⊆ V(P);
▶ if w ∈ W⊥ and either w ⪯ v or wRv, then v ∈ W⊥.
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VALUATION

▶ M,w |= P iff w ∈ V(P);
▶ M,w |= ⊥ iff w ∈ W⊥;
▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
▶ M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ;
▶ M,w |= φ→ ψ iff, for all v ∈ W, if w ⪯ v and M, v |= φ,

then M, v |= ψ;
▶ M,w |= □φ iff, for all v,u ∈ W, if w ⪯ v and vRu, then

M,u |= φ; and
▶ M,w |= ♢φ iff, for all v ∈ W, if w ⪯ v then, there is u such

that vRu and M,u |= φ.
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IK-MODELS

An IK-model is a CK-model where:
▶ W⊥ = ∅;
▶ R is forward and backward confluent:

w

w′

v

v′

⪯

R

⪯

R

w

w′

v

v′

⪯

R

⪯

R

An IKB-model is an IK-model where R is symmetric.
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CK ̸|= ¬¬□⊥ → □⊥

Consider the model below:

w0 w1

w2

R

⪯

We have that w0 |= ¬¬□⊥ but w0 ̸|= □⊥.

(w |= ¬¬□⊥ iff ∀v ⪰ w∃u ⪰ v.u |= □⊥)
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IK |= ¬¬□⊥ → □⊥

Suppose w ̸|= □⊥, then w ̸|= ¬¬□⊥.

w

v1 v2

⪯

R

u1

⪯

u2
R

⪯

(w ̸|= ¬¬□⊥ iff ∃v ⪰ w∀u ⪰ v.u ̸|= □⊥)
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IK |= ¬¬□⊥ → □⊥

Suppose w ̸|= □⊥, then w ̸|= ¬¬□⊥.

w

v1 v2

⪯

R

u1

⪯

u2
R

⪯

(w ̸|= ¬¬□⊥ iff ∃v ⪰ w∀u ⪰ v.u ̸|= □⊥)
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IK |= ¬¬□⊥ → □⊥

Suppose w ̸|= □⊥, then w ̸|= ¬¬□⊥.

w

v1 v2

⪯

R

u1

⪯

u2
R

⪯

(w ̸|= ¬¬□⊥ iff ∃v ⪰ w∀u ⪰ v.u ̸|= □⊥)
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CKB AND IKB COINCIDE

Theorem
For all modal formula φ, the following are equivalent:

1. CKB ⊢ φ;
2. IKB ⊢ φ; and
3. IKB |= φ.

IKB ⊢ φCKB ⊢ φ

IKB |= φ

So
undnes

s

By definition.

Canonical M
odel
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SYMMETRY IMPLIES CONFLUENCES COINCIDE

Lemma
Let M be a CK-model where the modal relation ∼ is symmetric.
Then ∼ is forward confluent iff ∼ is backward confluent.

w

w′

v

v′

⪯

∼

⪯

∼

w

w′

v

v′

⪯

∼

⪯

∼
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SYMMETRY IMPLIES CONFLUENCE IS NECESSARY

Lemma
There is a CK-model M = ⟨W,W⊥,⪯,∼,V⟩ and w ∈ W such that:
▶ ∼ is a symmetric relation;
▶ B□ := P → □♢P does not hold at w.

w |= Pv

v′

∼

⪯
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EXISTING RESULTS

Theorem (Arisaka, Das, Straßburger)

CKB ⊢ DP and CKB ⊢ N.

Theorem (De Groot, Shillito, Clouston)

Let M = ⟨W,W⊥,⪯,R,V⟩ be a CK-model. Then:
▶ Suppose that, for all w, v ∈ W, wRv, and v ∈ W⊥ implies

w ∈ W⊥. Then M |= N.
▶ Suppose that R is forward and backward confluent. Then

M |= DP and M |= FS.
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A CANONICAL MODEL FOR CKB

A (consistent) CKB-theory Γ is a set of formulas such that:
▶ Γ contains all the axioms of CKB and is closed under MP;
▶ if φ ∨ ψ ∈ Γ, then φ ∈ Γ or ψ ∈ Γ;
▶ ⊥ ̸∈ Γ.

Definition
The CKB-canonical model is Mc := ⟨Wc,W⊥

c ,⪯c,∼c,Vc⟩ where:
▶ Wc := {Γ | Γ is a CKB-theory};
▶ W⊥

c = ∅;
▶ Γ ⪯c ∆ iff Γ ⊆ ∆;
▶ Γ ∼c ∆ iff {φ | □φ ∈ Γ} ⊆ ∆ and ∆ ⊆ {φ | ♢φ ∈ Γ};
▶ Γ ∈ Vc(φ) iff P ∈ Γ.
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TRUTH LEMMA

Lemma
The CKB-canonical model Mc is an IKB-model.

The following lemma uses standard techniques:

Lemma
Let Mc be the CKB-canonical model.
For all formula φ and for all CKB-theory Γ,

Mc,Γ |= φ iff φ ∈ Γ.

Above, we use Zorn’s Lemma to prove:
▶ □φ ̸∈ Γ implies Γ ̸|= □φ; and
▶ ♢φ ∈ Γ implies Γ |= ♢φ.
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INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL such that:
Intuitionistic truth implies intuitionistic knowledge.

IEL consists of
▶ intuitionistic tautologies;
▶ K := K(φ→ ψ) → (Kφ→ Kφ);
▶ coT := φ→ Kφ;
▶ T′ := Kφ→ ¬¬φ;

closed under modus ponens.
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BHK INTERPRETATION

▶ a proof of φ ∧ ψ consists in a proof of φ and a proof of ψ;
▶ a proof of φ ∨ ψ consists in giving either a proof of φ or a

proof of ψ;
▶ a proof of φ→ ψ consists in a construction which given a

proof of φ returns a proof of ψ;
▶ ¬φ is an abbreviation for φ→ ⊥.

Artemov and Protopopescu proposed:
▶ a proof of Kφ is conclusive evidence of verification that φ

has a proof.
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SEMANTICS
An IEL model is a CK-model M = ⟨W,W⊥ ⪯,R,V⟩ where:
▶ W⊥ = ∅;
▶ wRv implies w ⪯ v;
▶ w ⪯ v implies, for all u, if vRu then wRu;
▶ for all w there is v such that wRv.

Define:
▶ w |= Kφ iff, for all v, wRv implies v |= φ.

Proposition

If w |= φ and w ⪯ v, then v |= φ.

As in CK, w |= K̂φ holds iff

for all v ⪰ w, there is u such that vRu and u |= φ.
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SOME PROPERTIES

▶ IEL ⊢ φ implies IEL ⊢ Kφ;
▶ IEL ⊢ Kφ→ KKφ;
▶ IEL ⊢ ¬Kφ→ K¬Kφ.
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POSSIBILITY DOUBLE NEGATION

Proposition

For all IEL model M and world w, if K̂P then w |= ¬¬P.

Proof.
We have ¬¬φ iff

for all v ⪰ w, there is u such that v ⪯ u and u |= φ.

From R ⊆⪯, we have K̂P → ¬¬P.
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DOUBLE NEGATION → POSSIBILITY

Proposition

For all IEL model M and world w, if w |= ¬¬P then K̂P.

Proof.
By contradiction:
▶ If K̂P fails at w, there is v such that w ⪯ v and, for all v′,

vRv′ implies v′ ̸|= P.
▶ If ¬¬P holds at w, there is u such that v ⪯ u and u |= P.
▶ uR is not empty; fix u′ ∈ uR.
▶ Since R ⊆⪯, u′ |= P.
▶ As v ⪯ u, uR ⊆ vR.
▶ Therefore v ⪯ u′ ̸|= P.
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POSSIBILITY — BHK INTERPRETATION

Proposition

For all IEL model M and world w, K̂P iff w |= ¬¬P.

Epistemic possibility is impossibility of proof of negation.
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CONCLUSION

Theorem (Das, Marin)

CK and IK do not prove the same ♢-free formulas.

Theorem (P.)

CKB and IKB prove the same formulas.

Corollary

CS5 = IS5.

Theorem (P.)

Over IEL, ♢φ is equivalent to ¬¬φ.
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AN OPEN PROBLEM

Characterize necessary and sufficient conditions for CK-frames
to validate the axioms in the modal cube:
▶ B□ := P → □♢P, B♢ := ♢□P → P;
▶ 4□ := □□P → □P, 4♢ := ♢♢P → ♢P;
▶ 5□ := ♢P → □♢P, 5♢ := ♢□P → □P;
▶ T□ := □P → P, T♢ := P → ♢P; and
▶ D := □P → ♢P.

Characterize necessary and sufficient conditions for CK-frames
to validate the axioms:
▶ Lmix := □(♢¬P ∨ P) → □P;
▶ L□ := □(□P → P) → □P;
▶ L♢ := ♢P → ♢(P ∧ ¬♢P).

(In general, intuitionistic GL with diamonds is complicated.)
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∼c IS SYMMETRIC

Suppose Γ ∼c ∆.
▶ {φ | □φ ∈ ∆} ⊆ Γ:

▶ Let □φ ∈ ∆.
▶ Then ♢□φ ∈ Γ as ∆ ⊆ Γ♢.
▶ By B♢, φ ∈ Γ.

▶ Γ ⊆ {φ | ♢φ ∈ ∆}.
▶ Let φ ∈ Γ.
▶ Then □♢φ ∈ Γ by B♢ and MP.
▶ Thus ♢φ ∈ ∆, as Γ□ ⊆ ∆.

We conclude that ∆ ∼c Γ.



∼c IS CONFLUENT - I
Suppose Γ ∼c ∆ ⪯c Σ. Let Υ be the closure of Γ ∪ {♢φ | φ ∈ Σ}
under MP. If □φ is a provable formula in Υ, then φ ∈ Σ.
▶ There are formulas ψ ∈ Γ and χ0, . . . , χn ∈ Σ such that

CKB ⊢ (
∧
j<n

♢χj) ∧ ψ → □φ.

▶ By Nec and K,

CKB ⊢ (
∧
j<n

□♢χj) → □(ψ → □φ)

and so
CKB ⊢ (

∧
j<n

□♢χj) → (♢ψ → ♢□φ).

▶ Since each χj is in Σ, so are the □♢χj, by B□.
▶ Since ψ ∈ Γ, ♢ψ ∈ ∆, and thus ♢ψ ∈ Σ too.
▶ By repeated applications of MP, we have ♢□φ ∈ Σ.
▶ By B♢, we have φ ∈ Σ.



∼c IS CONFLUENT - II

Suppose Γ ∼c ∆ ⪯c Σ. Let Υ be the closure of Γ ∪ {♢φ | φ ∈ Σ}
under MP.
▶ ⊥ ̸∈ Υ:

▶ Suppose otherwise, then □⊥ ∈ Υ.
▶ So ⊥ ∈ Σ, which is impossible.

▶ Υ is a set such that: Γ ⊆ Υ, Υ□ ⊆ Σ, Σ ⊆ Υ♢, and ⊥ ̸∈ Υ.
▶ Use Zorn’s Lemma to extend Υ to a theory Θ with these

properties.
▶ By construction, we have that Γ ⪯c Θ ∼c Σ.
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