On diamonds in constructive modal logic

Leonardo Pacheco *Institute of Science Tokyo*

7 April 2025

Available at: leonardopacheco.xyz/slides/taiwan2025.pdf

INTRODUCTION

INTRODUCTION

Theorem (Das, Marin)

CK *and* **IK** *do not prove the same ◊-free formulas:*

- ightharpoonup CK $ightharpoonup \neg \neg \Box \bot \rightarrow \Box \bot$, and
- ightharpoonup $|\mathsf{K} \vdash \neg \neg \Box \bot \rightarrow \Box \bot$

Theorem (P.)

CKB and IKB prove the same formulas.

Theorem (P.)

Over IEL, $\Diamond \varphi$ *is equivalent to* $\neg \neg \varphi$.

THE LOGIC **CK**

CK is the least set of formulas containing:

- ► intuitionistic tautologies;
- $ightharpoonup K_{\square} := \square(\varphi \to \psi) \to (\square\varphi \to \square\psi);$

and closed under

$$(\mathbf{Nec}) \; \frac{\varphi}{\Box \varphi} \quad \text{ and } \quad (\mathbf{MP}) \; \frac{\varphi \quad \varphi \to \psi}{\psi}.$$

THE LOGICS CKB, IK, AND IKB

Let

- $ightharpoonup FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- $ightharpoonup DP := \Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi;$
- $ightharpoonup N := \neg \Diamond \bot$:
- $ightharpoonup B_{\square} := P \to \square \lozenge P$; and
- $ightharpoonup B_{\Diamond} := \Diamond \Box P \to P.$

Then:

- ightharpoonup CKB := CK + { B_{\square} , B_{\Diamond} };
- \blacktriangleright IK := CK + {FS, DP, N}; and
- ightharpoonup IKB := IK + $\{B_{\square}, B_{\Diamond}\}$ = CKB + $\{FS, DP, N\}$.

CK-MODELS

A CK-model is a tuple $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ where:

- ► W is the set of possible worlds;
- ▶ W^{\perp} ⊂ W is the set of fallible worlds;
- \blacktriangleright the *intuitionistic relation* \prec is a reflexive and transitive relation over W;
- ▶ the modal relation *R* is a relation over *W*;
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We require:

- ▶ if $w \leq v$ and $w \in V(P)$, then $v \in V(P)$;
- ▶ for all $P \in \text{Prop}$, $W^{\perp} \subseteq V(P)$;
- ▶ if $w \in W^{\perp}$ and either $w \leq v$ or wRv, then $v \in W^{\perp}$.

CK AND IK

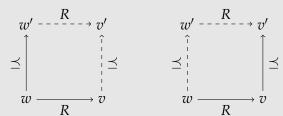
VALUATION

- \blacktriangleright $M, w \models P \text{ iff } w \in V(P);$
- \blacktriangleright $M, w \models \bot \text{ iff } w \in W^{\bot};$
- \blacktriangleright $M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$
- \blacktriangleright $M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi;$
- \blacktriangleright $M, w \models \varphi \rightarrow \psi$ iff, for all $v \in W$, if $w \leq v$ and $M, v \models \varphi$, then $M, v \models \psi$;
- $ightharpoonup M, w \models \Box \varphi \text{ iff, for all } v, u \in W, \text{ if } w \prec v \text{ and } vRu, \text{ then}$ $M, u \models \varphi$; and
- \blacktriangleright $M, w \models \Diamond \varphi$ iff, for all $v \in W$, if $w \prec v$ then, there is u such that vRu and $M, u \models \varphi$.

IK-MODELS

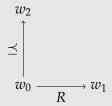
An IK-model is a CK-model where:

- $ightharpoonup W^{\perp} = \emptyset;$
- ► *R* is forward and backward confluent:



An IKB-model is an IK-model where *R* is symmetric.

Consider the model below:



We have that $w_0 \models \neg \neg \Box \bot$ but $w_0 \not\models \Box \bot$.

$$(w \models \neg \neg \Box \bot \text{ iff } \forall v \succeq w \exists u \succeq v.u \models \Box \bot)$$

$$\mathsf{IK} \models \neg \neg \Box \bot \to \Box \bot$$

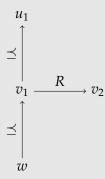
Suppose $w \not\models \Box \bot$, then $w \not\models \neg \neg \Box \bot$.

$$v_1 \xrightarrow{R} v_2$$
 $\preceq \downarrow$
 w

$$(w \not\models \neg \neg \Box \bot \text{ iff } \exists v \succeq w \forall u \succeq v.u \not\models \Box \bot)$$

$$\mathsf{IK} \models \neg \neg \Box \bot \to \Box \bot$$

Suppose $w \not\models \Box \bot$, then $w \not\models \neg \neg \Box \bot$.



$$(w \not\models \neg \neg \Box \bot \text{ iff } \exists v \succeq w \forall u \succeq v.u \not\models \Box \bot)$$

CK AND IK

$$\mathsf{IK} \models \neg \neg \Box \bot \to \Box \bot$$

Suppose $w \not\models \Box \bot$, then $w \not\models \neg \neg \Box \bot$.

$$\begin{array}{ccc}
u_1 & --R & & u_2 \\
 & & & \downarrow & \\
 & & & \downarrow & \\
 & & & & & \downarrow & \\
 & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & & & & \downarrow & \\
 & & & \downarrow & \downarrow & \\
 & & & &$$

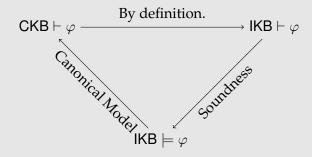
$$(w \not\models \neg \neg \Box \bot \text{ iff } \exists v \succeq w \forall u \succeq v.u \not\models \Box \bot)$$

CKB AND **IKB** COINCIDE

Theorem

For all modal formula φ , the following are equivalent:

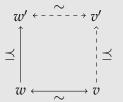
- 1. CKB $\vdash \varphi$;
- 2. $IKB \vdash \varphi$; and
- 3. IKB $\models \varphi$.

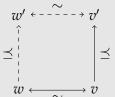


SYMMETRY IMPLIES CONFLUENCES COINCIDE

Lemma

Let M be a CK-model where the modal relation \sim is symmetric. Then \sim is forward confluent iff \sim is backward confluent.





SYMMETRY IMPLIES CONFLUENCE IS NECESSARY

Lemma

There is a CK-model $M = \langle W, W^{\perp}, \preceq, \sim, V \rangle$ and $w \in W$ such that:

- ightharpoonup ~ is a symmetric relation;
- ▶ $B_{\square} := P \to \square \lozenge P$ does not hold at w.

$$v' \\ \preceq \uparrow \\ v \longleftrightarrow w \models P$$

EXISTING RESULTS

Theorem (Arisaka, Das, Straßburger)

 $CKB \vdash DP$ and $CKB \vdash N$.

Theorem (De Groot, Shillito, Clouston)

Let $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ *be a* **CK**-model. Then:

- ▶ Suppose that, for all $w, v \in W$, wRv, and $v \in W^{\perp}$ implies $w \in W^{\perp}$. Then $M \models N$.
- ► Suppose that R is forward and backward confluent. Then $M \models DP$ and $M \models FS$.

A CANONICAL MODEL FOR CKB

A (consistent) CKB-theory Γ is a set of formulas such that:

- \triangleright Γ contains all the axioms of CKB and is closed under MP;
- \blacktriangleright if $\varphi \lor \psi \in \Gamma$, then $\varphi \in \Gamma$ or $\psi \in \Gamma$;
- $ightharpoonup \perp \not \in \Gamma$.

Definition

The CKB-canonical model is $M_c := \langle W_c, W_c^{\perp}, \preceq_c, \sim_c, V_c \rangle$ where:

- $ightharpoonup W_c := \{\Gamma \mid \Gamma \text{ is a CKB-theory}\};$
- $\blacktriangleright W_c^{\perp} = \emptyset;$
- ightharpoonup $\Gamma \prec_c \Delta$ iff $\Gamma \subset \Delta$;
- $ightharpoonup \Gamma \sim_c \Delta \text{ iff } \{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Delta \text{ and } \Delta \subseteq \{\varphi \mid \Diamond \varphi \in \Gamma\};$
- $ightharpoonup \Gamma \in V_c(\varphi) \text{ iff } P \in \Gamma.$

TRUTH LEMMA

Lemma

The CKB-canonical model M_c is an IKB-model.

The following lemma uses standard techniques:

Lemma

Let M_c be the CKB-canonical model. For all formula φ and for all CKB-theory Γ ,

$$M_c, \Gamma \models \varphi \text{ iff } \varphi \in \Gamma.$$

Above, we use Zorn's Lemma to prove:

- $ightharpoonup \Box \varphi \notin \Gamma \text{ implies } \Gamma \not\models \Box \varphi; \text{ and }$
- $\triangleright \Diamond \varphi \in \Gamma \text{ implies } \Gamma \models \Diamond \varphi.$

INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL such that: Intuitionistic truth implies intuitionistic knowledge.

CK AND IK

IEL consists of

- intuitionistic tautologies;
- $ightharpoonup K := K(\varphi \to \psi) \to (K\varphi \to K\varphi);$
- $ightharpoonup coT := \varphi \to K\varphi;$
- $ightharpoonup T' := K\varphi \to \neg\neg\varphi;$

closed under modus ponens.

BHK INTERPRETATION

- \blacktriangleright a proof of $\varphi \land \psi$ consists in a proof of φ and a proof of ψ ;
- \blacktriangleright a proof of $\varphi \lor \psi$ consists in giving either a proof of φ or a proof of ψ ;
- ightharpoonup a proof of $\varphi \to \psi$ consists in a construction which given a proof of φ returns a proof of ψ ;
- $ightharpoonup \neg \varphi$ is an abbreviation for $\varphi \to \bot$.

Artemov and Protopopescu proposed:

 \blacktriangleright a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof.

SEMANTICS

An IEL model is a CK-model $M = \langle W, W^{\perp} \leq, R, V \rangle$ where:

- $ightharpoonup W^{\perp} = \emptyset;$
- ▶ wRv implies $w \leq v$;
- ▶ $w \leq v$ implies, for all u, if vRu then wRu;
- ightharpoonup for all w there is v such that wRv.

Define:

• $w \models K\varphi$ iff, for all v, wRv implies $v \models \varphi$.

Proposition

If $w \models \varphi$ *and* $w \leq v$, then $v \models \varphi$.

As in CK, $w \models \hat{K}\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

SOME PROPERTIES

- ▶ $\mathsf{IEL} \vdash \varphi \text{ implies } \mathsf{IEL} \vdash K\varphi;$
- ▶ IEL $\vdash K\varphi \to KK\varphi$;
- ▶ IEL $\vdash \neg K\varphi \to K\neg K\varphi$.

Possibility Double Negation

Proposition

For all IEL model M and world w, if $\hat{K}P$ then $w \models \neg \neg P$.

Proof.

We have $\neg\neg\varphi$ iff

for all $v \succeq w$, there is u such that $v \preceq u$ and $u \models \varphi$.

From $R \subseteq \preceq$, we have $\hat{K}P \rightarrow \neg \neg P$.

Double Negation → Possibility

Proposition

For all IEL model M and world w, if $w \models \neg \neg P$ then KP.

Proof.

By contradiction:

- ▶ If $\hat{K}P$ fails at w, there is v such that $w \leq v$ and, for all v', vRv' implies $v' \not\models P$.
- ▶ If $\neg \neg P$ holds at w, there is u such that $v \leq u$ and $u \models P$.
- ightharpoonup uR is not empty; fix $u' \in uR$.
- ▶ Since $R \subseteq \prec$, $u' \models P$.
- ightharpoonup As $v \prec u$, $uR \subseteq vR$.
- ▶ Therefore $v \leq u' \not\models P$.

Possibility — BHK interpretation

Proposition

For all IEL model M and world w, $\hat{K}P$ iff $w \models \neg \neg P$.

Epistemic possibility is impossibility of proof of negation.

CONCLUSION

Theorem (Das, Marin)

CK *and* **IK** *do not prove the same ◊-free formulas.*

Theorem (P.)

CKB and IKB prove the same formulas.

Corollary

CS5 = IS5.

Theorem (P.)

Over IEL, $\Diamond \varphi$ *is equivalent to* $\neg \neg \varphi$.

AN OPEN PROBLEM

Characterize necessary and sufficient conditions for CK-frames to validate the axioms in the modal cube:

$$ightharpoonup B_{\square} := P \to \square \lozenge P, B_{\lozenge} := \lozenge \square P \to P;$$

$$\blacktriangleright \ 4_{\square} := \square \square P \to \square P, 4_{\Diamond} := \Diamond \Diamond P \to \Diamond P;$$

$$\blacktriangleright \ 5_{\square} := \Diamond P \to \square \Diamond P, 5_{\Diamond} := \Diamond \square P \to \square P;$$

$$ightharpoonup T_{\square} := \square P \to P, T_{\lozenge} := P \to \lozenge P;$$
 and

$$\blacktriangleright D := \Box P \to \Diamond P.$$

Characterize necessary and sufficient conditions for CK-frames to validate the axioms:

$$ightharpoonup L_{mix} := \Box(\Diamond \neg P \lor P) \to \Box P;$$

$$\blacktriangleright \ L_{\square} := \square(\square P \to P) \to \square P;$$

$$\blacktriangleright L_{\Diamond} := \Diamond P \to \Diamond (P \land \neg \Diamond P).$$

(In general, intuitionistic GL with diamonds is complicated.)

REFERENCES

ARISAKA, DAS, STRASSBURGER, On Nested Sequents for Constructive Modal Logics, 2015.

CK AND IK

- ARTEMOV, PROTOPOPESCU, Intuitionistic Epistemic Logic, 2016.
- DAS, MARIN, On Intuitionistic Diamonds (and Lack Thereof), 2023.
- DE GROOT, SHILLITO, CLOUSTON, Semantical Analysis of *Intuitionistic Modal Logics between CK and IK*, 2024.
- PACHECO, Collapsing Constructive and Intuitionistic Modal *Logics*, 2024.
- PACHECO, Epistemic Possibility in Artemov and Protopopescu's Intuitionistic Epistemic Logic, 2024.

\sim_c IS SYMMETRIC

Suppose $\Gamma \sim_c \Delta$.

- $\blacktriangleright \ \{\varphi \mid \Box \varphi \in \Delta\} \subseteq \Gamma$:
 - ▶ Let $\Box \varphi \in \Delta$.
 - ▶ Then $\Diamond \Box \varphi \in \Gamma$ as $\Delta \subseteq \Gamma \Diamond$.
 - ▶ By B_{\diamondsuit} , $\varphi \in \Gamma$.
- $\blacktriangleright \Gamma \subseteq \{\varphi \mid \Diamond \varphi \in \Delta\}.$
 - ▶ Let $\varphi \in \Gamma$.
 - ▶ Then $\Box \Diamond \varphi \in \Gamma$ by B_{\Diamond} and **MP**.
 - ▶ Thus $\Diamond \varphi \in \Delta$, as $\Gamma^{\square} \subseteq \Delta$.

We conclude that $\Delta \sim_c \Gamma$.

\sim_c IS CONFLUENT - I

Suppose $\Gamma \sim_c \Delta \preceq_c \Sigma$. Let Υ be the closure of $\Gamma \cup \{ \Diamond \varphi \mid \varphi \in \Sigma \}$ under **MP**. If $\Box \varphi$ is a provable formula in Υ , then $\varphi \in \Sigma$.

▶ There are formulas $\psi \in \Gamma$ and $\chi_0, \dots, \chi_n \in \Sigma$ such that

$$\mathsf{CKB} \vdash (\bigwedge_{j < n} \Diamond \chi_j) \land \psi \to \Box \varphi.$$

ightharpoonup By **Nec** and *K*,

$$\mathsf{CKB} \vdash (\bigwedge_{j < n} \Box \Diamond \chi_j) \to \Box (\psi \to \Box \varphi)$$

and so

$$\mathsf{CKB} \vdash (\bigwedge_{j < n} \Box \Diamond \chi_j) \to (\Diamond \psi \to \Diamond \Box \varphi).$$

- ▶ Since each χ_i is in Σ , so are the $\Box \Diamond \chi_i$, by B_{\Box} .
- ▶ Since $\psi \in \Gamma$, $\Diamond \psi \in \Delta$, and thus $\Diamond \psi \in \Sigma$ too.
- ▶ By repeated applications of **MP**, we have $\Diamond \Box \varphi \in \Sigma$.
- ▶ By B_{\Diamond} , we have $\varphi \in \Sigma$.

\sim_c IS CONFLUENT - II

Suppose $\Gamma \sim_c \Delta \preceq_c \Sigma$. Let Υ be the closure of $\Gamma \cup \{ \Diamond \varphi \mid \varphi \in \Sigma \}$ under **MP**.

- ▶ ⊥ ∉ Υ:
 - ▶ Suppose otherwise, then $\Box \bot \in \Upsilon$.
 - ▶ So \bot ∈ Σ , which is impossible.
- $ightharpoonup \Upsilon$ is a set such that: $\Gamma \subseteq \Upsilon$, $\Upsilon^{\square} \subseteq \Sigma$, $\Sigma \subseteq \Upsilon^{\Diamond}$, and $\bot \notin \Upsilon$.
- ▶ Use Zorn's Lemma to extend Υ to a theory Θ with these properties.
- ▶ By construction, we have that $\Gamma \leq_c \Theta \sim_c \Sigma$.