Higher-order feedback computation

Leonardo Pacheco TU Wien

(j.w.w. Juan P. Aguilera and Robert S. Lubarsky)

18 March 2024

Available at: leonardopacheco.xyz/slides/suugakukai2024-hofb.pdf

FEEDBACK TURING MACHINES

Feedback machines have access to information on convergence/divergence of feedback machines.

FEEDBACK ORACLE

Feedback Turing machines have access to a halting oracle:

$$h(e,n) := \begin{cases} \downarrow, & \text{if } \{e\}^h(n) \text{ converges}; \\ \uparrow, & \text{if } \{e\}^h(n) \text{ diverges}; \\ \text{undefined, otherwise.} \end{cases}$$

When h(e, n) is undefined, the computation $\{e\}^h(n)$ *freezes*.

FREEZING

Let e be such that

$$e(n) := \begin{cases} \text{diverges,} & \text{if } \{n\}^h(n) \text{ converges;} \\ 0, & \text{if } \{n\}^h(n) \text{ diverges.} \end{cases}$$

Then

$$e(e)$$
 converges $\iff e(e)$ diverges.

Therefore e(e) freezes.

CHARACTERIZATION

Theorem (Ackerman, Freer, Lubarsky)

The following classes coincide:

- 1. the feedback semi-computable sets;
- 2. the Π_1^1 sets;
- 3. the sets definable by arithmetic inductive operators; and
- 4. the sets of winning positions of Gale–Stewart games whose payoffs are Σ_1^0 .

SECOND-ORDER FEEDBACK

2-feedback Turing machines have access to 2 freezing oracles:

$$f_0(e,n) := \left\{ \begin{array}{ll} \downarrow, & \text{if } \{e\}^{f_0,f_1}(n) \text{ converges}; \\ \uparrow_0, & \text{if } \{e\}^{f_0,f_1}(n) \text{ diverges}; \\ \text{undefined, otherwise.} \end{array} \right.$$

$$f_1(e,n) := \left\{ \begin{array}{ll} \downarrow, & \text{if } \{e\}^{f_0,f_1}(n) \text{ converges}; \\ \uparrow_0, & \text{if } \{e\}^{f_0,f_1}(n) \text{ diverges}; \\ \uparrow_1, & \text{if } \{e\}^{f_0,f_1}(n) \text{ freezes}; \\ \text{undefined, otherwise}. \end{array} \right.$$

HIGHER-ORDER FEEDBACK

Fix
$$\alpha < \omega_1^{\text{ck}}$$
.
For $\beta < \alpha$, let

$$f_{\beta}(e,n) := \begin{cases} \downarrow, & \text{if } \{e\}^{\{f_{\gamma}\}_{\gamma < \alpha}}(n) \text{ converges;} \\ \uparrow_{\beta'}, & \text{if } \{e\}^{\{f_{\gamma}\}_{\gamma < \alpha}}(n) \text{ } \beta'\text{-freezes } (\beta' < \beta); \\ \text{undefined, otherwise.} \end{cases}$$

CHARACTERIZATION

Theorem (Aguilera, Lubarsky, P.)

For all $\alpha < \omega_1^{\text{ck}}$, the following classes coincide:

- 1. the $(\alpha + 1)$ -feedback semi-computable sets;
- 2. the sets definable by $\alpha+1$ simultaneous arithmetical inductive operators; and
- 3. the sets of winning positions of Gale–Stewart games whose payoffs are differences of α many Σ_2^0 sets.

FUTURE WORK

Connection between feedback and reflecting ordinals:

Almost a Theorem

For all $\alpha < \omega_1^{\text{ck}}$, the following classes coincide:

- 1. the $(\alpha + 1)$ -feedback semi-computable sets, and
- 2. the Σ_1 -definable sets in $L_{\beta_{\alpha+1}}$, where $\beta_{\alpha+1}$ is the least $\alpha+1$ -reflecting ordinal.

There are strict and loose notions of feedback hyperjump. The following follows from work of Aguilera and Lubarsky:

Theorem

A set of natural numbers is 2-feedback semi-computable iff it is reducible to the loose feedback hyperjump \mathcal{LO} .

The relation between higher-order feedback and strict feedback hyperjump is unclear.

REFERENCES

- [1] Ackerman, Freer, Lubarsky, "An Introduction to Feedback Turing Computability", 2020.
- [2] Aguilera, Lubarsky, Pacheco, "Higher-order feedback computability", submitted.
- [3] Rogers Jr., "Theory of Recursive Functions and Effective Computability", 1967.