Higher-order feedback computation

Leonardo PACHECO (TU Wien)*

Feedback Turing machines are Turing machines which can query a halting oracle $h:\subseteq\omega\times\omega\to\{\downarrow,\uparrow\}$, which has information on the convergence or divergence of feedback computations. That is, given the code e for a feedback Turing machine and an input n the oracle h answers if the computation $\{e\}^h(n)$ converges or diverges. To avoid a contradiction by diagonalization, feedback Turing machines have two ways of not converging: they can diverge as standard Turing machines, or they can freeze. A feedback Turing machine freezes when it asks the halting oracle h about a pair $\langle e,n\rangle$ not in the domain of h.

Feedback Turing machines were first studied by Ackerman, Freer and Lubarsky [1, 2]. They proved that the feedback computable sets are the Δ_1^1 sets and the feedback semi-computable sets are the Π_1^1 sets. We can also show that the feedback semi-computable sets are the winning regions of Gale–Stewart games with Σ_1^0 payoff [3]. It is quite curious that some of the key results of [1] were announced in Rogers' textbook on recursion theory [4], almost 50 years before proofs were published.

A natural question to ask is: what about feedback Turing machines which can ask if computations of the same type converge, diverge, or freeze? These new machines are second-order feedback machines. Note that we must now have a new and stronger notion of freezing to avoid a contradiction by diagonalization. Having defined second-order feedback computation, it is now natural to ask: what about third-, fourth-, and higher-order feedback?

We define α th order feedback Turing machines for each computable ordinal α . We also describe feedback computable and semi-computable sets using inductive definitions and Gale–Stewart games. Specifically, we prove the following level-by-level correspondence:

Theorem. For all $\alpha < \omega_1^{\text{ck}}$, the following classes coincide:

- 1. the $(\alpha + 1)$ -feedback semi-computable sets;
- 2. the sets definable by $\alpha + 1$ simultaneous arithmetical inductive operators; and
- 3. the sets of winning positions of Gale–Stewart games whose payoffs are differences of $\alpha + 1$ many Σ_2^0 sets.

(Joint work with Juan P. Aguilera and Robert S. Lubarsky.)

References

- [1] N.L. Ackerman, C.E. Freer, R.S. Lubarsky, "Feedback Turing Computability, and Turing Computability as Feedback", 2015.
- [2] N.L. Ackerman, C.E. Freer, R.S. Lubarsky, "An Introduction to Feedback Turing Computability", 2020.
- [3] Y. Moschovakis, "Descriptive Set Theory", 2009.
- [4] H. Rogers Jr., "Theory of Recursive Functions and Effective Computability", 1987.

This work was supported by the Austrian Science Fund Grant TAI-797.

Keywords: Turing computability, inductive definitions, determinacy.

^{*}e-mail: leonardovpacheco@gmail.com web: https://leonardopacheco.xyz