Possibility 00000

Epistemic possiblity in intuitionistic epistemic logic

Leonardo Pacheco TU Wien

December 11, 2023

Available at: leonardopacheco.xyz/slides/rims2023.pdf

MODAL LOGIC

Modal logic is

propositional logic
$$+\Box + \Diamond$$

In epistemic logic:

- $K\varphi := \text{it is known that } \varphi;$
- $\hat{K}\varphi$:= it is epistemically possible(?) that φ .

CLASSICAL EPISTEMIC LOGIC

Axioms:

- $ightharpoonup K := K(\varphi \to \psi) \to (K\varphi \to K\varphi);$
- $ightharpoonup T := K\varphi \to \varphi;$
- ▶ $4 := K\varphi \to KK\varphi$;
- ▶ $5 := \neg K\varphi \to K\neg K\varphi$.

Rules:

- $ightharpoonup MP := \varphi \to \psi, \varphi \vdash \psi;$
- ightharpoonup Nec := $\varphi \vdash K\varphi$.

Models:

► Kripke models $\langle W, R, V \rangle$ where R is an equivalence relation.

INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL such that: *Intuitionistic truth implies intuitionistic knowledge.*

IEL consists of

- ► intuitionistic tautologies;
- $ightharpoonup K := K(\varphi \to \psi) \to (K\varphi \to K\varphi);$
- $ightharpoonup coT := \varphi \to K\varphi;$
- $T' := K\varphi \to \neg\neg\varphi;$

closed under modus ponens.

BHK INTERPRETATION

- a proof of $\varphi \wedge \psi$ consists in a proof of φ and a proof of ψ ;
- a proof of $\varphi \lor \psi$ consists in giving either a proof of φ or a proof of ψ ;
- ▶ a proof of $\varphi \to \psi$ consists in a construction which given a proof of φ returns a proof of ψ ;
- ▶ $\neg \varphi$ is an abbreviation for $\varphi \rightarrow \bot$.

Artemov and Protopopescu proposed:

▶ a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof.

SEMANTICS

An IEL model is a tuple $M = \langle W, \preceq, R, V \rangle$ where:

- $ightharpoonup \leq$ is a preorder on W;
- \blacktriangleright *V* is monotone w.r.t. \preceq ;
- ▶ wRv implies $w \leq v$;
- ▶ $w \leq v$ implies, for all u, if vRu then wRu;
- ightharpoonup for all w there is v such that wRv.

Define:

• $w \models K\varphi$ iff, for all v, wRv implies $v \models \varphi$.

Proposition

If $w \models \varphi$ *and* $w \leq v$, then $v \models \varphi$.

PROPERTIES — NECESSITATION

Proposition

IEL is closed under necessitation:

 $\mathsf{IEL} \vdash \varphi \text{ implies } \mathsf{IEL} \vdash K\varphi.$

PROPERTIES — INTROSPECTION

Proposition

IEL proves positive introspection:

$$K\varphi \to KK\varphi$$
.

Proposition

IEL proves negative introspection:

$$\neg K\varphi \to K\neg K\varphi$$
.

Possibility — Semantics

 $w \models \hat{K}\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

Proposition

If $w \models \hat{K}\varphi$ and $w \leq v$, then $v \models \hat{K}\varphi$.

Possibility — Double Negation

Proposition

For all IEL model M and world w, if $\hat{K}P$ then $w \models \neg \neg P$.

Proof.

We have $\neg\neg\varphi$ iff

for all $v \succeq w$, there is u such that $v \preceq u$ and $u \models \varphi$.

From $R \subseteq \preceq$, we have $\hat{K}P \rightarrow \neg \neg P$.

Possibility — Double Negation (Reversal)

Proposition

For all IEL model M and world w, if $w \models \neg \neg P$ then $\hat{K}P$.

Proof.

By contradiction:

- ▶ If $\hat{K}P$ fails at w, there is v such that $w \leq v$ and, for all v', vRv' implies $v' \not\models P$.
- ▶ If $\neg \neg P$ holds at w, there is u such that $v \leq u$ and $u \models P$.
- ▶ uR is not empty; fix $u' \in uR$.
- ▶ Since $R \subseteq \prec$, $u' \models P$.
- ▶ As $v \leq u$, $uR \subseteq vR$.
- ▶ Therefore $v \leq u' \not\models P$.

Possibility — BHK interpretation

Proposition

For all IEL model M and world w, $\hat{K}P$ iff $w \models \neg \neg P$.

Epistemic possibility is impossibility of proof of negation.

THANK YOU!

For more details on intuitionistic epistemic logic, see

► Artemov, Protopopescu, "Intuitionistic Epistemic Logic".

For more details on intuitionistic modal logics, see

van der Giessen, "Uniform Interpolation and Admissible Rules: Proof-theoretic investigations into (intuitionistic) modal logics".