

Intuitionistic Knowledge as a Constructive Diamond

Leonardo Pacheco
Institute of Science Tokyo

(j.w.w. Igor Sedlár) October 28, 2025
Available at: leonardopacheco.xyz/slides/llal9.pdf

INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL to formalize:
Intuitionistic truth implies intuitionistic knowledge.

OUR BASIC LOGIC — \mathbf{IEL}_0

\mathbf{IEL}_0 consists of

- ▶ intuitionistic tautologies;
- ▶ $K := K(\varphi \rightarrow \psi) \rightarrow (K\varphi \rightarrow K\psi)$;
- ▶ $coT := \varphi \rightarrow K\varphi$;

closed under *modus ponens*.

BHK INTERPRETATION

- ▶ a proof of $\varphi \wedge \psi$ consists in a proof of φ and a proof of ψ ;
- ▶ a proof of $\varphi \vee \psi$ consists in giving either a proof of φ or a proof of ψ ;
- ▶ a proof of $\varphi \rightarrow \psi$ consists in a construction which given a proof of φ returns a proof of ψ ;
- ▶ there is no proof of \perp .

Artemov and Protopopescu proposed:

- ▶ a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof.

WHAT IS CONCLUSIVE EVIDENCE?

The examples given by Artemov and Protopopescu are:

- ▶ existential generalization,
- ▶ zero-knowledge proof,
- ▶ testimony of authority,
- ▶ classified sources.

OTHER LOGICS

We obtain the following logics by extending IEL_0 :

- ▶ $\mathsf{IEL} := \mathsf{IEL}_0 + K\varphi \rightarrow \neg\neg\varphi$;
- ▶ $\mathsf{IEL}_0^t := \mathsf{IEL}_0 + KK\varphi \rightarrow K\varphi$;
- ▶ $\mathsf{IEL}^t := \mathsf{IEL} + KK\varphi \rightarrow K\varphi = \mathsf{IEL}_0^t + K\varphi \rightarrow \neg\neg\varphi$.

SEMANTICS

An IEL_0 model is a tuple $M = \langle W, \preceq, R, V \rangle$ where:

- ▶ \preceq is a preorder on W ;
- ▶ V is monotone w.r.t. \preceq ;
- ▶ wRv implies $w \preceq v$;
- ▶ $w \preceq v$ implies, for all u , if vRu then wRu ;
- ▶ for all w there is v such that wRv .

Define:

- ▶ $w \models K\varphi$ iff, for all v , wRv implies $v \models \varphi$.

Proposition

If $w \models \varphi$ and $w \preceq v$, then $v \models \varphi$.

SOME PROPERTIES

Proposition

Co-reflection implies the following:

- ▶ $\mathbf{IEL}_0 \vdash \varphi$ implies $\mathbf{IEL} \vdash K\varphi$;
- ▶ $\mathbf{IEL}_0 \vdash K\varphi \rightarrow KK\varphi$;
- ▶ $\mathbf{IEL}_0 \vdash \neg K\varphi \rightarrow K\neg K\varphi$.

CONSTRUCTIVE POSSIBILITY

Definition

$w \models \hat{K}\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

Proposition

For all IEL model M and world w ,

$$M, w \models \hat{K}P \text{ iff } M, w \models \neg\neg P.$$

Epistemic possibility is impossibility of proof of negation.

MODELS

A constructive IEL_0 -model is a tuple $M = \langle W, w_\perp, \preceq, R, V \rangle$ such that:

- ▶ \preceq is a preorder;
- ▶ $V(P)$ is closed under \preceq for all $P \in \mathbf{Prop}$;
- ▶ if wRv_1 and wRv_2 then there is u such that $v_1, v_2 \preceq u$ and wRu ;
- ▶ wRv implies $w \preceq v$;
- ▶ wRw ;
- ▶ if $w_\perp \preceq w$ or $w_\perp R w$, then $w = w_\perp$;
- ▶ $w_\perp \in V(P)$ for all P .

Definition

$w \models K\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

BHK INTERPRETATION, AGAIN

Definition

$w \models K\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

- ▶ a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof.

COMPLETENESS - THEORIES

Definition

A φ -theory is a subset Γ^+ of $\text{Sub}(\varphi) \cup \{\perp, \Diamond \perp\}$ such that:

- Γ^+ is closed under IEL-derivations: $X \subseteq \Gamma^+$ and $\text{IEL} \vdash \bigwedge X \rightarrow \psi$ implies $\psi \in \Gamma^+$;
- Γ^+ is closed under disjunctions: $\psi \vee \theta \in \Gamma^+$ implies $\psi \in \Gamma^+$ or $\theta \in \Gamma^+$.

COMPLETENESS - SEGMENTS

Definition

A φ -segment is a pair $\Gamma = \langle \Gamma^+, \Gamma^\Diamond \rangle$ of φ -theories such that:

- ▶ $\Gamma^+ \subseteq \Gamma^\Diamond$;
- ▶ $K\varphi \in \Gamma^+$ implies $\varphi \in \Gamma^\Diamond$.

COMPLETENESS - CANONICAL MODEL

Definition

We define a canonical model $M^\varphi := \langle W, \preceq, R, V \rangle$ as follows:

- ▶ W is the set of φ -segments;
- ▶ w_\perp consists of two copies of the inconsistent φ -theory;
- ▶ $\Gamma \preceq \Delta$ iff $\Gamma^+ \subseteq \Delta^+$;
- ▶ $\Gamma R \Delta$ iff $\Gamma = \Delta$ or $\Delta^+ = \Gamma^\Diamond$;
- ▶ $V(P) = \{\Gamma \in W \mid P \in \Gamma^+\}$.

Lemma

M^φ is a constructive IEL_0 -model.

Lemma

For all $\psi \in \mathsf{Sub}(\varphi)$, $M, \Gamma \models \psi$ iff $\psi \in \Gamma$.

COMPLETENESS FOR OTHER LOGICS

- ▶ If $K\varphi \rightarrow \neg\neg\varphi$ is in the logic, delete the fallible world w_\perp .
- ▶ If $KK\varphi \rightarrow K\varphi$ is in the logic, make R the transitive closure of the defined relation.

BI-MODAL MODELS

We consider bi-relational models

$$W = \langle W, w_\perp, \preceq, R_K, R_B, V \rangle$$

where

- ▶ $\langle W, w_\perp, \preceq, R_K, V \rangle$ is an IEL frame;
- ▶ $\langle W, w_\perp, \preceq, R_B, V \rangle$ is an IEL_0 frame;
- ▶ $R_K \subseteq R_B$.

These frames are complete for the logic

$$\text{IEL} \oplus \text{IEL}_0 \oplus K\varphi \rightarrow B\varphi.$$

Proposition

Belief and knowledge are not interdefinable in this logic.

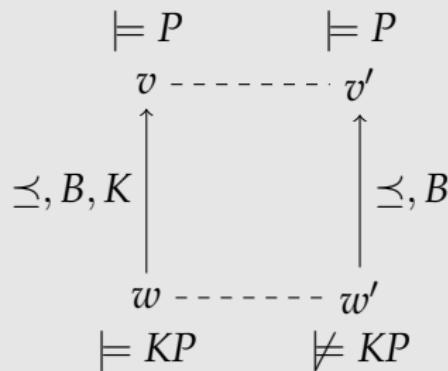
BISIMULATIONS

Fix models $M = \langle W, \preceq, R_K, R_B \rangle$ and $M' = \langle W', \preceq', R'_K, R'_B \rangle$. Let $X \in \{K, B\}$. A X -bisimulation between M and M' is a non-empty relation $Z \subseteq W \times W'$ such that:

1. if wZw' then $w \models P$ iff $w' \models P'$;
2. if wZw' and $w \preceq v$, then there is $v' \in W'$ such that vZv' and $w' \preceq' v'$;
3. if wZw' and $w' \preceq' v'$, then there is $v \in W$ such that vZv' and $w \preceq v$;
4. if wZw' and wR_Xv , then there is $v' \in W'$ such that vZv' and $w'R'_Xv'$;
5. if wZw' and $w'R'_Xv'$, then there is $v \in W$ such that vZv' and wR_Xv .

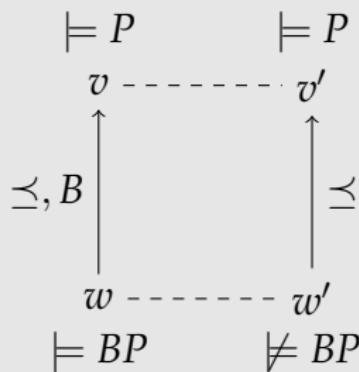
K CANNOT BE DEFINED IN TERMS OF B .

The following two models are B -bisimilar:



B CANNOT BE DEFINED IN TERMS OF *K*

The following two models are *K*-bisimilar:



ITERATIVE COMMON KNOWLEDGE

Consider a language with multiple knowledge modalities:

$$K_0, K_1, \dots, K_n.$$

We define:

- ▶ $E\varphi := K_0\varphi \wedge K_1\varphi \wedge \dots \wedge K_n\varphi$; and
- ▶ $C\varphi := E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \dots$

Co-reflection implies that:

$$C\varphi \leftrightarrow E\varphi$$

Thus the *iterative* definition of common knowledge is trivial in this setting.

INTRODUCTION
oooooooo

DIAMONDS
ooooo

BELIEF AND KNOWLEDGE
oooo

ASSORTED PROPOSITION
○●○○

PEDANTRY
oooo

CONCLUSION
○

Consider a language with two knowledge modalities:

K_0 and K_1 .

Co-reflection implies:

$$K_0\varphi \rightarrow K_1K_0\varphi.$$

GLIVENKO'S THEOREM

Theorem (Glivenko)

$\mathbf{CPC} \vdash \varphi$ if and only if $\mathbf{IPC} \vdash \neg\neg\varphi$.

If $\Lambda \in \{\mathbf{IEL}, \mathbf{IEL}_0, \mathbf{IEL}^t, \mathbf{IEL}_0^t\}$, then:

Theorem (Litak, Polzer, Rabenstein)

$\Lambda \vdash \varphi$ if and only if $\Lambda + \text{excluded middle} \vdash \neg\neg\varphi$.

A semantic proof can be obtained as in Chagrov and Zakharyaschev's textbook.

IGNORANCE IN EPISTEMIC LOGIC

Ignorance *whether* φ holds was defined by Fine as

$$\neg K\varphi \wedge \neg K\neg\varphi.$$

He also defines and studies other types of ignorance.

Theorem

Co-reflection implies that ignorance is not satisfiable.

PEDANTRY

The following statements are simultaneously true:

- ▶ IEL *is* an intuitionistic modal logic.
- ▶ IEL *is not* an intuitionistic modal logic.

IEL IS INTUITIONISTIC

Simpson's six requirements for an intuitionistic modal logic:

- ▶ Conservative over IPC.
- ▶ Contains all substitution instances of theorems of IPC and is closed under **MP**.
- ▶ Adding $\varphi \vee \neg\varphi$ results in a standard classical modal logic.
- ▶ Has the disjunction property.
- ▶ \Box and \Diamond are independent.
- ▶ There is an intuitionistically comprehensible explanation of the meaning of the modalities.

CK AND IK

CK is the modal logic obtained from:

- ▶ all intuitionistic tautologies;
- ▶ $K_{\Box} := \Box(\varphi \rightarrow \psi) \rightarrow (\Box\varphi \rightarrow \Box\psi)$;
- ▶ $K_{\Box} := \Box(\varphi \rightarrow \psi) \rightarrow (\Diamond\varphi \rightarrow \Diamond\psi)$;
- ▶ *modus ponens* and *necessitation*.

IK is obtained by adding to CK the axioms:

- ▶ N:= $\neg\Diamond\perp$;
- ▶ DP:= $\Diamond(\varphi \vee \psi) \rightarrow \Diamond\varphi \vee \Diamond\psi$;
- ▶ FS:= $(\Diamond\varphi \rightarrow \Box\psi) \rightarrow \Box(\varphi \rightarrow \psi)$.

IEL IS NOT INTUITIONISTIC — K AS A DIAMOND

Theorem

If K is interpreted as a constructive diamond, then its dual satisfies:

$$M, w \models \bar{K}\varphi \text{ iff } M, w \models \varphi.$$

- ▶ $N_{\Diamond} := \neg K\perp$;
- ▶ $DP_{\Diamond} := K(\varphi \vee \psi) \rightarrow K\varphi \vee K\psi$;
- ▶ $FS_{\Diamond} := (K\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \psi)$.

IEL satisfies N_{\Diamond} and FS_{\Diamond} .

IEL does not satisfy DP_{\Diamond} .

IEL IS NOT INTUITIONISTIC — K AS A BOX

If K is interpreted as a box, then its dual satisfies:

$$M, w \models \hat{K}\varphi \text{ iff } M, w \models \neg\neg\varphi.$$

- $N_{\Box} := \neg\neg\neg\perp$;
- $DP_{\Box} := \neg\neg(\varphi \vee \psi) \rightarrow \neg\neg\varphi \vee \neg\neg\psi$;
- $FS_{\Box} := (\neg\neg\varphi \rightarrow K\psi) \rightarrow K(\varphi \rightarrow \psi)$.

IEL satisfies N_{\Box} and FS_{\Box} .

IEL does not satisfy DP_{\Box} .

THANK YOU!

For more on IEL:

- ▶ Artemov, Protopopescu, “Intuitionistic epistemic logic”.

For more on intuitionistic and constructive modal logics:

- ▶ Das, Shillito, de Groot, “Diamond-free parts of intuitionistic modal logics”, blog post.