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INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL to formalize:
Intuitionistic truth implies intuitionistic knowledge.
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OUR BASIC LOGIC — IEL0

IEL0 consists of
▶ intuitionistic tautologies;
▶ K := K(φ→ ψ) → (Kφ→ Kφ);
▶ coT := φ→ Kφ;

closed under modus ponens.
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BHK INTERPRETATION

▶ a proof of φ ∧ ψ consists in a proof of φ and a proof of ψ;
▶ a proof of φ ∨ ψ consists in giving either a proof of φ or a

proof of ψ;
▶ a proof of φ→ ψ consists in a construction which given a

proof of φ returns a proof of ψ;
▶ there is no proof of ⊥.

Artemov and Protopopescu proposed:
▶ a proof of Kφ is conclusive evidence of verification that φ

has a proof.
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WHAT IS CONCLUSIVE EVIDENCE?

The examples given by Artemov and Protopopescu are:
▶ existential generalization,
▶ zero-knowledge proof,
▶ testimony of authority,
▶ classified sources.
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OTHER LOGICS

We obtain the following logics by extending IEL0:
▶ IEL := IEL0 + Kφ→ ¬¬φ;
▶ IELt

0 := IEL0 + KKφ→ Kφ;
▶ IELt := IEL + KKφ→ Kφ = IELt

0 + Kφ→ ¬¬φ.
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SEMANTICS

An IEL0 model is a tuple M = ⟨W,⪯,R,V⟩ where:
▶ ⪯ is a preorder on W;
▶ V is monotone w.r.t. ⪯;
▶ wRv implies w ⪯ v;
▶ w ⪯ v implies, for all u, if vRu then wRu;
▶ for all w there is v such that wRv.

Define:
▶ w |= Kφ iff, for all v, wRv implies v |= φ.

Proposition

If w |= φ and w ⪯ v, then v |= φ.
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SOME PROPERTIES

Proposition

Co-reflection implies the following:
▶ IEL0 ⊢ φ implies IEL ⊢ Kφ;
▶ IEL0 ⊢ Kφ→ KKφ;
▶ IEL0 ⊢ ¬Kφ→ K¬Kφ.
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CONSTRUCTIVE POSSIBILITY

Definition
w |= K̂φ holds iff

for all v ⪰ w, there is u such that vRu and u |= φ.

Proposition

For all IEL model M and world w,

M,w |= K̂P iff M,w |= ¬¬P.

Epistemic possibility is impossibility of proof of negation.
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MODELS
A constructive IEL0-model is a tuple M = ⟨W,w⊥,⪯,R,V⟩ such
that:
▶ ⪯ is a preorder;
▶ V(P) is closed under ⪯ for all P ∈ Prop;
▶ if wRv1 and wRv2 then there is u such that v1, v2 ⪯ u and

wRu;
▶ wRv implies w ⪯ v;
▶ wRw;
▶ if w⊥ ⪯ w or w⊥Rw, then w = w⊥;
▶ w⊥ ∈ V(P) for all P.

Definition
w |= Kφ holds iff

for all v ⪰ w, there is u such that vRu and u |= φ.
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BHK INTERPRETATION, AGAIN

Definition
w |= Kφ holds iff

for all v ⪰ w, there is u such that vRu and u |= φ.

▶ a proof of Kφ is conclusive evidence of verification that φ
has a proof.
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COMPLETENESS - THEORIES

Definition
A φ-theory is a subset Γ+ of Sub(φ) ∪ {⊥,♢⊥} such that:
▶ Γ+ is closed under IEL-derivations: X ⊆ Γ+ and

IEL ⊢
∧

X → ψ implies ψ ∈ Γ+;
▶ Γ+ is closed under disjunctions: ψ ∨ θ ∈ Γ+ implies ψ ∈ Γ+

or θ ∈ Γ+.
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COMPLETENESS - SEGMENTS

Definition
A φ-segment is a pair Γ = ⟨Γ+,Γ♢⟩ of φ-theories such that:
▶ Γ+ ⊆ Γ♢;
▶ Kφ ∈ Γ+ implies φ ∈ Γ♢.
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COMPLETENESS - CANONICAL MODEL

Definition
We define a canonical model Mφ := ⟨W,⪯,R,V⟩ as follows:
▶ W is the set of φ-segments;
▶ w⊥ consists of two copies of the inconsistent φ-theory;
▶ Γ ⪯ ∆ iff Γ+ ⊆ ∆+;
▶ ΓR∆ iff Γ = ∆ or ∆+ = Γ♢;
▶ V(P) = {Γ ∈ W | P ∈ Γ+}.

Lemma
Mφ is a constructive IEL0-model.

Lemma
For all ψ ∈ Sub(φ), M,Γ |= ψ iff ψ ∈ Γ.
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COMPLETENESS FOR OTHER LOGICS

▶ If Kφ→ ¬¬φ is in the logic, delete the fallible world w⊥.
▶ If KKφ→ Kφ is in the logic, make R the transitive closure

of the defined relation.
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BI-MODAL MODELS

We consider bi-relational models

W = ⟨W,w⊥,⪯,RK,RB,V⟩

where
▶ ⟨W,w⊥,⪯,RK,V⟩ is an IEL frame;
▶ ⟨W,w⊥,⪯,RB,V⟩ is an IEL0 frame;
▶ RK ⊆ RB.

These frames are complete for the logic

IEL ⊕ IEL0 ⊕ Kφ→ Bφ.

Proposition

Belief and knowledge are not interdefinable in this logic.
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BISIMULATIONS

Fix models M = ⟨W,⪯,RK,RB⟩ and M′ = ⟨W′,⪯′,R′
K,R

′
B⟩. Let

X ∈ {K,B}. A X-bisimulation betweeen M and M′ is a
non-empty relation Z ⊆ W × W′ such that:

1. if wZw′ then w |= P iff w′ |= P′;
2. if wZw′ and w ⪯ v, then there is v′ ∈ W′ such that vZv′ and

w′ ⪯′ v′;
3. if wZw′ and w′ ⪯′ v′, then there is v ∈ W such that vZv′ and

w ⪯ v;
4. if wZw′ and wRXv, then there is v′ ∈ W′ such that vZv′ and

w′R′
Xv′;

5. if wZw′ and w′R′
Xv′, then there is v ∈ W such that vZv′ and

wRXv.
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K CANNOT BE DEFINED IN TERMS OF B.

The following two models are B-bisimilar:

w

v

w′

v′

⪯,B,K ⪯,B

|= P |= P

|= KP ̸|= KP
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B CANNOT BE DEFINED IN TERMS OF K

The following two models are K-bisimilar:

w

v

w′

v′

⪯,B ⪯

|= P |= P

|= BP ̸|= BP
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ITERATIVE COMMON KNOWLEDGE

Consider a language with multiple knowledge modalities:

K0,K1, . . . ,Kn.

We define:
▶ Eφ := K0φ ∧ K1φ ∧ · · · ∧ Knφ; and
▶ Cφ := Eφ ∧ EEφ ∧ EEEφ ∧ · · ·

Co-reflection implies that:

Cφ↔ Eφ

Thus the iterative definition of common knowledge is trivial in
this setting.
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Consider a language with two knowledge modalities:

K0 and K1.

Co-reflection implies:

K0φ→ K1K0φ.
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GLIVENKO’S THEOREM

Theorem (Glivenko)

CPC ⊢ φ if and only if IPC ⊢ ¬¬φ.

If Λ ∈ {IEL, IEL0, IELt, IELt
0}, then:

Theorem (Litak, Polzer, Rabenstein)

Λ ⊢ φ if and only if Λ + excluded middle ⊢ ¬¬φ.

A semantic proof can be obtained as in Chagrov and
Zakharyaschev’s textbook.
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IGNORANCE IN EPISTEMIC LOGIC

Ignorance whether φ holds was defined by Fine as

¬Kφ ∧ ¬K¬φ.

He also defines and studies other types of ignorance.

Theorem
Co-reflection implies that ignorance is not satisfiable.
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PEDANTRY

The following statements are simultaneously true:
▶ IEL is an intuitionistic modal logic.
▶ IEL is not an intuitionistic modal logic.
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IEL IS INTUITIONISTIC

Simpson’s six requirements for an intuitionistic modal logic:
▶ Conservative over IPC.
▶ Contains all substitution instances of theorems of IPC and

is closed under MP.
▶ Adding φ ∨ ¬φ results in a standard classical modal logic.
▶ Has the disjunction property.
▶ □ and ♢ are independent.
▶ There is an intuitionistically comprehensible explanation

of the meaning of the modalities.
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CK AND IK

CK is the modal logic obtained from:
▶ all intuitionistic tautologies;
▶ K□ := □(φ→ ψ) → (□φ→ □ψ);
▶ K□ := □(φ→ ψ) → (♢φ→ ♢ψ);
▶ modus ponens and necessitation.

IK is obtained by adding to CK the axioms:
▶ N:= ¬♢⊥;
▶ DP:= ♢(φ ∨ ψ) → ♢φ ∨ ♢ψ;
▶ FS:= (♢φ→ □ψ) → □(φ→ ψ).
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IEL IS NOT INTUITIONISTIC — K AS A DIAMOND

Theorem
If K is interpreted as a constructive diamond, then its dual satisfies:

M,w |= K̄φ iff M,w |= φ.

▶ N♢:= ¬K⊥;
▶ DP♢:= K(φ ∨ ψ) → Kφ ∨ Kψ;
▶ FS♢:= (Kφ→ ψ) → (φ→ ψ).

IEL satisfies N♢ and FS♢.
IEL does not satisfy DP♢.
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IEL IS NOT INTUITIONISTIC — K AS A BOX

If K is interpreted as a box, then its dual satisfies:

M,w |= K̂φ iff M,w |= ¬¬φ.

▶ N□:= ¬¬¬⊥;
▶ DP□:= ¬¬(φ ∨ ψ) → ¬¬φ ∨ ¬¬ψ;
▶ FS□:= (¬¬φ→ Kψ) → K(φ→ ψ).

IEL satisfies N□ and FS□.
IEL does not satisfy DP□.
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THANK YOU!

For more on IEL:
▶ Artemov, Protopopescu, “Intuitionistic epistemic logic”.

For more on intuitionistic and constructive modal logics:
▶ Das, Shillito, de Groot, “Diamond-free parts of

intuitionistic modal logics”, blog post.
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