Topological Semantics for IS4

Leonardo Pacheco *Institute of Science Tokyo*

6 March 2025

Available at: leonardopacheco.xyz/slides/llal6.pdf

A QUESTION

A modality is a sequence of $\neg s$, $\Box s$, and $\Diamond s$.

Proposition

S4 has finitely many modalities (modulo equivalence).

Question

Does IS4 have finitely many modalities?

INTRODUCTION

Theorem

S4 *is complete w.r.t. topological semantics.*

Theorem

IPC is complete w.r.t. topological semantics.

We show how to combine the topological semantics for S4 and IPC to obtain:

Theorem (P.)

IS4 *is complete w.r.t. bi-topological semantics.*

This also holds for CS4, S4I, GS4, GS4^c.

IS4—A BIT OF HISTORY

- ► McKinsey–Tarski(50s): topological semantics for S4.
- ► Fischer Servi(70s): completeness of IS4.
- ► Simpson(1994): natural deduction for S4.
- ► Girlando *et al.* (2023): IS4 is decidable.

EXISTING RESULTS

iS4: no diamonds

- ▶ de Groot, Shillito (2024)
- ► Witczak (2019)

IS4

▶ Davoren (2009): topological semantics for intuitionistic part, relational semantics for modal part.

TOPOLOGICAL SEMANTICS FOR S4

A topological model for IS4 is a tuple $\langle W, \tau, V \rangle$ such that:

- ▶ W a non-empty set;
- ightharpoonup au is a topology over W; and
- ▶ V is a valuation function.

Define:

- $\blacktriangleright \|\Box \varphi\|^M = \operatorname{Int}(\|\varphi\|^M);$
- $\blacktriangleright \| \Diamond \varphi \|^M = \operatorname{Clo}(\| \varphi \|^M).$

Valuation for other connectives as usual in classical logics.

Theorem

S4 *is complete w.r.t. topological models.*

SOUNDNESS OF TOPOLOGICAL SEMANTICS

Proposition

 $\Box P \rightarrow \Box \Box P$ is valid over topological semantics.

Proof.

 $Int(X) \subseteq Int(Int(X)).$

Proposition

 $\Box P \rightarrow P$ is valid over topological semantics.

Proof.

 $Int(X) \subseteq X$.

EMBEDDING KRIPKE MODELS INTO TOP. MODELS

- ▶ Let $M = \langle W, \sqsubseteq, V \rangle$ be an S4-model.
- \blacktriangleright Let τ be the topology generated by upsets

$$[w] := \{ v \in W \mid w \sqsubseteq v \}.$$

- ▶ Define $M^t := \langle W, \tau, V \rangle$.
- ▶ For all $w \in W$ and all formula φ ,

$$M, w \models \varphi \iff M^t, w \models \varphi.$$

TOPOLOGICAL SEMANTICS FOR IPC

A topological model for IPC is a tuple $\langle W, \tau, V \rangle$ such that:

- ► W is a non-empty set;
- $ightharpoonup \tau$ is a topology over W;
- ► *V* is a valuation function:
- \blacktriangleright V(P) is an open set of τ .

Define:

- $ightharpoonup ||P||^M = V(P);$
- $\blacktriangleright \parallel \perp \parallel^M = \emptyset$:
- $|| \varphi \wedge \psi ||^M = || \varphi ||^M \cap || \psi ||^M;$
- $| | \varphi \vee \psi | |^M = | | \varphi | |^M \cup | | \psi | |^M;$
- $| | \varphi \to \psi | |^M = \operatorname{Int}(W \setminus ||\varphi||^M \cup ||\psi||^M):$

Theorem

IPC *is complete w.r.t. topological models.*

IS4 - AXIOMATIZATION

- ► intuitionistic tautologies;
- $\blacktriangleright 4_{\square} := \square \varphi \to \square \square \varphi;$
- $\blacktriangleright 4_{\Diamond} := \Diamond \Diamond \varphi \rightarrow \Diamond \varphi;$
- $ightharpoonup T_{\Box} := \Box \varphi \to \varphi;$
- $ightharpoonup T_{\wedge} := \varphi \to \Diamond \varphi;$
- $ightharpoonup FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- \triangleright $DP := \Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi;$
- $ightharpoonup N := \neg \Diamond \bot$.

$$(\mathbf{Nec}) \; \frac{\varphi}{\Box \varphi} \quad \text{ and } \quad (\mathbf{MP}) \; \frac{\varphi \quad \varphi \to \psi}{\psi}.$$

IS4 - SEMANTICS

An IS4-model is a tuple $M = \langle W, \preceq, \sqsubseteq, V \rangle$ where:

- ► W is a non-empty set;
- \blacktriangleright the *intuitionistic relation* \prec is a reflexive and transitive relation over W;
- ▶ the *modal relation* \Box is a reflexive and transitive relation over W; and
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We further require that,

- ightharpoonup if $w \leq v$ and $w \in V(P)$, then $v \in V(P)$; and
- ightharpoonup is forward and backward confluent.

Theorem (Fischer Servi)

IS4 is complete w.r.t. IS4-models.

CONFLUENCES

INTRODUCTION

Forward and backward confluence.

IS4

EVALUATION

- \blacktriangleright $M, w \models P \text{ iff } w \in V(P);$
- \blacktriangleright $M, w \models \bot$ never holds;
- \blacktriangleright $M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$
- \blacktriangleright $M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi;$
- $ightharpoonup M, w \models \varphi \rightarrow \psi \text{ iff, for all } v \in W, \text{ if } w \leq v \text{ and } M, v \models \varphi,$ then $M, v \models \psi$;
- $ightharpoonup M, w \models \Box \varphi \text{ iff, for all } v, u \in W, \text{ if } w \prec v \text{ and } vRu, \text{ then}$ $M, u \models \varphi$; and
- $ightharpoonup M, w \models \Diamond \varphi$ iff there is u such that wRv and $M, v \models \varphi$.

CONFLUENCE IS NECESSARY

P holds at w_0, w_1, w_2, w_3 . $\Box P \rightarrow \Box \Box P$ fails at w_0 .

BI-TOPOLOGICAL IS4-MODELS

A bi-topological IS4-model is a tuple $M = \langle W, \tau_i, \tau_m, V \rangle$ where:

- ► W is a non-empty set;
- $ightharpoonup au_i$ and au_m are topologies over W;
- V assigns to each propositional symbol an i-open set.

We require that:

- ▶ the *i*-interior of any *m*-open set is *m*-open; and
- ▶ the *m*-closure of any *i*-open set is *i*-open.

VALUATION

We combine the topological valuations for S4 and IPC:

- ▶ $||P||^M = V(P)$;
- $\blacktriangleright \parallel \perp \parallel^M = \emptyset;$
- $| \varphi \wedge \psi |^M = | \varphi |^M \cap | \psi |^M;$
- $| | \varphi \vee \psi | |^M = | | \varphi | |^M \cup | | \psi | |^M;$

- $|| \Diamond \varphi ||^M = \operatorname{Clo}_m(|| \varphi ||^M).$

SOUNDNESS - I

Lemma

If **IS4** *proves* φ , *then* φ *holds over all bi-topological* **IS4**-*models.*

Straightforward. The key case is:

$$\begin{split} \|\Box\varphi\| &= \mathrm{Int}_i(\mathrm{Int}_m(\|\varphi\|)) \\ &= \mathrm{Int}_m(\mathrm{Int}_i(\mathrm{Int}_m(\|\varphi\|))) \\ &= \mathrm{Int}_i(\mathrm{Int}_m(\mathrm{Int}_i(\mathrm{Int}_m(\|\varphi\|)))) \\ &= \|\Box\Box\varphi\| \end{split}$$

(Remmember: the *i*-interior of any *m*-open set is *m*-open.)

EMBEDDING KRIPKE MODELS INTO BI-TOP. MODELS

Let $M = \{W, W^{\perp}, \preceq, \sqsubseteq, V\}$ be an IS4-model. The topologized model M_t is $\langle W, W^{\perp}, \tau_i, \tau_m, V \rangle$, where:

- ▶ the basic open sets of τ_i are $[w]_i := \{v \mid w \leq v\}$; and
- ▶ the basic open sets of τ_m are $[w]_m := \{v \mid w \sqsubseteq v\}$.

Proposition

If M is an IS4-model, then M^t is a bi-topological IS4-model.

Proposition

For all $w \in W$ and formula φ ,

$$M, w \models \varphi \iff M^t, w \models \varphi.$$

Proposition

The i-interior of any m-open set is m-open.

That is, $\operatorname{Int}_i(U) = \operatorname{Int}_m(\operatorname{Int}_i(U))$, for all m-open U.

Proof.

- ▶ Suppose $w \in Int_i(U)$.
- \blacktriangleright Let $w \sqsubseteq w' \prec w''$.
- ▶ By backward confluence, there is v such that $w \leq v \sqsubseteq w''$.
- ightharpoonup As $w \in \operatorname{Int}_i(U)$, $v \in U$.
- ▶ $w'' \in U$ since U is m-open.
- ▶ So $[w']_i \subseteq U$, and so $w' \in Int_i(U)$.
- ▶ So $[w]_m \subseteq \operatorname{Int}_i(U)$
- \blacktriangleright We conclude $w \in \operatorname{Int}_m(\operatorname{Int}_i(U))$.

M^t is a bi-topological IS4-model - II

Proposition

The m-closure of any i-open set is i-open.

That is, $\operatorname{Int}_i(\operatorname{Clo}_m(U)) = \operatorname{Clo}_m(U)$, for all i-open set U.

Proof.

- ▶ Suppose $w \in Clo_m(U)$.
- ▶ As $w \in Clo_m(U)$, there is $v \in U$ such that $w \sqsubseteq v$.
- ▶ Let $w' \succeq w$.
- ▶ By fwd. confluence, there is v' such that $w' \sqsubseteq v'$ and $v \preceq v'$.
- ► As *U* is *i*-open, $v' \in U$.
- ▶ Thus $w' \in Clo_m(U)$.
- ▶ We conclude $[w]_i \subseteq Clo_m(U)$.

CS4 - AXIOMATIZATION

- ► intuitionistic tautologies;
- $\blacktriangleright 4_{\square} := \square \varphi \to \square \square \varphi;$
- $\blacktriangleright 4_{\Diamond} := \Diamond \Diamond \varphi \rightarrow \Diamond \varphi;$
- $ightharpoonup T_{\square} := \square \varphi \to \varphi;$
- $ightharpoonup T_{\Diamond} := \varphi \to \Diamond \varphi.$

(Nec)
$$\frac{\varphi}{\Box \varphi}$$
 and (MP) $\frac{\varphi \quad \varphi \to \psi}{\psi}$.

CS4 - SEMANTICS

An CS4-model is a tuple $M = \langle W, W^{\perp}, \preceq, \sqsubseteq, V \rangle$ where:

- $ightharpoonup W^{\perp}$ is the set of fallible worlds;
- ▶ ☐ is backwards confluent.
- ► $M, w \models \Diamond \varphi$ iff for all v if $w \leq v$ then there is u such that vRu and $M, u \models \varphi$.

Otherwise like an IS4-model.

Theorem (Mendler, de Paiva)

CS4 is complete w.r.t. CS4-models.

BI-TOPOLOGICAL CS4-MODELS

A bi-topological IS4-model is a tuple $M = \langle W, \tau_i, \tau_m, V \rangle$ where:

- ► W is a non-empty set;
- $ightharpoonup au_i$ and au_m are topologies over W;
- V assigns to each propositional symbol an i-open set.

We require that:

- ▶ the *i*-interior of any *m*-open set is *m*-open; and
- ▶ the *m*-closure of any *i*-open set is *i*-open.

S4I - AXIOMATIZATION

- ► CS4;
- $ightharpoonup CD := \Box(\varphi \lor \psi) \to \Box \varphi \lor \Diamond \psi;$
- \triangleright $DP := \Diamond(\varphi \lor \psi) \to \Diamond\varphi \lor \Diamond\psi;$
- $ightharpoonup N := \neg \Diamond \bot$.

$$(\mathbf{Nec}) \; \frac{\varphi}{\Box \varphi} \quad \ \ \text{and} \quad \ \ (\mathbf{MP}) \; \frac{\varphi \quad \varphi \to \psi}{\psi}.$$

S4I - SEMANTICS

An S4I-model is a tuple $M = \langle W, \preceq, \sqsubseteq, V \rangle$ where:

- ightharpoonup is forwards confluent;
- ightharpoonup is downwards confluent:

 $ightharpoonup M, w \models \Box \varphi$ iff for all v suif wRv then $M, v \models \varphi$.

Otherwise like an IS4-model.

Theorem (Balbiani, Diéguez, Fernández-Duque, McLean)

S4I is complete w.r.t. S4I-models.

BI-TOPOLOGICAL S4I-MODELS

A bi-topological IS4-model is a tuple $M = \langle W, \tau_i, \tau_m, V \rangle$ where:

- ► *W* is a non-empty set;
- ightharpoonup and τ_m are topologies over W;
- ► *V* assigns to each propositional symbol an *i*-open set.

We require that:

- ▶ the *m*-interior of any *i*-open set is *i*-open; and
- ▶ the *m*-closure of any *i*-open set is *i*-open.

GS4 AND GS4^c

- ► GS4 = IS4 + $(\varphi \rightarrow \psi) \lor (\psi \rightarrow \varphi)$;
- ► $GS4^c = GS4 + CD$.

The models are obtained by requiring that \leq is locally linear: $w \leq v$ and $w \leq u$ implies $v \leq u$ or $w \leq v$.

Theorem (Balbiani, Diéguez, Fernández-Duque, McLean)

GS4 and GS4^c is complete w.r.t. GS4- and GS4^c-models, respectively.

BI-TOPOLOGICAL S4I-MODELS

A bi-topological GS4-model is an IS4 where τ_i is hereditarily extremally disconnected: in every subspace of W, the i-closure of and *i*-open set is *i*-open.

Theorem (Bezhanishvili, Bezhanishvili, Lucero-Bryan, van Mill)

 τ_i is hereditarily extremally disconnected iff \leq is locally linear.

CONCLUSION

Theorem (P.)

The following hold:

- ► IS4 is complete w.r.t. bi-topological IS4-models;
- ► CS4 *is complete w.r.t. bi-topological* CS4-*models*;
- ► S4I is complete w.r.t. bi-topological S4I-models;
- ► GS4 *is complete w.r.t. bi-topological* GS4-*models*;
- ► GS4^c is complete w.r.t. bi-topological GS4^c-models.

FUTURE WORK

Some ongoing work with David Fernández-Duque and Konstantinos Papafilipou:

- ▶ Bi-metric semantics for non-classical variations of S4.
- ► Transfer the topological and metric results to intuitionistic variations of wK4.