
INTRODUCTION S4 AND IPC IS4 BI-TOPOLOGICAL MODELS OTHER VARIATIONS CONCLUSION

Topological Semantics for IS4

Leonardo Pacheco
Institute of Science Tokyo

6 March 2025

Available at: leonardopacheco.xyz/slides/llal6.pdf



INTRODUCTION S4 AND IPC IS4 BI-TOPOLOGICAL MODELS OTHER VARIATIONS CONCLUSION

A QUESTION

A modality is a sequence of ¬s, □s, and ♢s.

Proposition

S4 has finitely many modalities (modulo equivalence).

Question

Does IS4 have finitely many modalities?
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INTRODUCTION

Theorem
S4 is complete w.r.t. topological semantics.

Theorem
IPC is complete w.r.t. topological semantics.

We show how to combine the topological semantics for S4 and
IPC to obtain:

Theorem (P.)

IS4 is complete w.r.t. bi-topological semantics.

This also holds for CS4,S4I,GS4,GS4c.



INTRODUCTION S4 AND IPC IS4 BI-TOPOLOGICAL MODELS OTHER VARIATIONS CONCLUSION

IS4—A BIT OF HISTORY

▶ McKinsey–Tarski(50s): topological semantics for S4.
▶ Fischer Servi(70s): completeness of IS4.
▶ Simpson(1994): natural deduction for S4.
▶ Girlando et al. (2023): IS4 is decidable.
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EXISTING RESULTS

iS4: no diamonds
▶ de Groot, Shillito (2024)
▶ Witczak (2019)

IS4
▶ Davoren (2009): topological semantics for intuitionistic

part, relational semantics for modal part.
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TOPOLOGICAL SEMANTICS FOR S4

A topological model for IS4 is a tuple ⟨W, τ,V⟩ such that:
▶ W a non-empty set;
▶ τ is a topology over W; and
▶ V is a valuation function.

Define:
▶ ∥□φ∥M = Int(∥φ∥M);
▶ ∥♢φ∥M = Clo(∥φ∥M).

Valuation for other connectives as usual in classical logics.

Theorem
S4 is complete w.r.t. topological models.
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SOUNDNESS OF TOPOLOGICAL SEMANTICS

Proposition

□P → □□P is valid over topological semantics.

Proof.
Int(X) ⊆ Int(Int(X)).

Proposition

□P → P is valid over topological semantics.

Proof.
Int(X) ⊆ X.
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EMBEDDING KRIPKE MODELS INTO TOP. MODELS

▶ Let M = ⟨W,⊑,V⟩ be an S4-model.
▶ Let τ be the topology generated by upsets

[w] := {v ∈ W | w ⊑ v}.

▶ Define Mt := ⟨W, τ,V⟩.
▶ For all w ∈ W and all formula φ,

M,w |= φ ⇐⇒ Mt,w |= φ.
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TOPOLOGICAL SEMANTICS FOR IPC
A topological model for IPC is a tuple ⟨W, τ,V⟩ such that:
▶ W is a non-empty set;
▶ τ is a topology over W;
▶ V is a valuation function;
▶ V(P) is an open set of τ .

Define:
▶ ∥P∥M = V(P);
▶ ∥⊥∥M = ∅;
▶ ∥φ ∧ ψ∥M = ∥φ∥M ∩ ∥ψ∥M;
▶ ∥φ ∨ ψ∥M = ∥φ∥M ∪ ∥ψ∥M;
▶ ∥φ→ ψ∥M = Int(W \ ∥φ∥M ∪ ∥ψ∥M);

Theorem
IPC is complete w.r.t. topological models.



INTRODUCTION S4 AND IPC IS4 BI-TOPOLOGICAL MODELS OTHER VARIATIONS CONCLUSION

IS4 - AXIOMATIZATION

▶ intuitionistic tautologies;
▶ 4□ := □φ→ □□φ;
▶ 4♢ := ♢♢φ→ ♢φ;
▶ T□ := □φ→ φ;
▶ T♢ := φ→ ♢φ;
▶ FS := (♢φ→ □ψ) → □(φ→ ψ);
▶ DP := ♢(φ ∨ ψ) → ♢φ ∨ ♢ψ;
▶ N := ¬♢⊥.

(Nec)
φ

□φ
and (MP)

φ φ→ ψ

ψ
.
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IS4 - SEMANTICS

An IS4-model is a tuple M = ⟨W,⪯,⊑,V⟩ where:
▶ W is a non-empty set;
▶ the intuitionistic relation ⪯ is a reflexive and transitive

relation over W;
▶ the modal relation ⊑ is a reflexive and transitive relation

over W; and
▶ V : Prop → P(W) is a valuation function.

We further require that,
▶ if w ⪯ v and w ∈ V(P), then v ∈ V(P); and
▶ ⊑ is forward and backward confluent.

Theorem (Fischer Servi)

IS4 is complete w.r.t. IS4-models.
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CONFLUENCES
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Forward and backward confluence.
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EVALUATION

▶ M,w |= P iff w ∈ V(P);
▶ M,w |= ⊥ never holds;
▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
▶ M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ;
▶ M,w |= φ→ ψ iff, for all v ∈ W, if w ⪯ v and M, v |= φ,

then M, v |= ψ;
▶ M,w |= □φ iff, for all v,u ∈ W, if w ⪯ v and vRu, then

M,u |= φ; and
▶ M,w |= ♢φ iff there is u such that wRv and M, v |= φ.
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CONFLUENCE IS NECESSARY

w0

w1 w2

w3 w4

⪯

⊑

⪯

⊑

P holds at w0,w1,w2,w3.
□P → □□P fails at w0.
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BI-TOPOLOGICAL IS4-MODELS

A bi-topological IS4-model is a tuple M = ⟨W, τi, τm,V⟩ where:
▶ W is a non-empty set;
▶ τi and τm are topologies over W;
▶ V assigns to each propositional symbol an i-open set.

We require that:
▶ the i-interior of any m-open set is m-open; and
▶ the m-closure of any i-open set is i-open.
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VALUATION

We combine the topological valuations for S4 and IPC:
▶ ∥P∥M = V(P);
▶ ∥⊥∥M = ∅;
▶ ∥φ ∧ ψ∥M = ∥φ∥M ∩ ∥ψ∥M;
▶ ∥φ ∨ ψ∥M = ∥φ∥M ∪ ∥ψ∥M;
▶ ∥φ→ ψ∥M = Inti(W \ ∥φ∥M ∪ ∥ψ∥M);
▶ ∥□φ∥M = Inti(Intm(∥φ∥M));
▶ ∥♢φ∥M = Clom(∥φ∥M).
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SOUNDNESS - I

Lemma
If IS4 proves φ, then φ holds over all bi-topological IS4-models.

Straightforward. The key case is:

∥□φ∥ = Inti(Intm(∥φ∥))
= Intm(Inti(Intm(∥φ∥)))
= Inti(Intm(Inti(Intm(∥φ∥))))
= ∥□□φ∥

(Remmember: the i-interior of any m-open set is m-open.)
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EMBEDDING KRIPKE MODELS INTO BI-TOP. MODELS

Let M = {W,W⊥,⪯,⊑,V} be an IS4-model. The topologized
model Mt is ⟨W,W⊥, τi, τm,V⟩, where:
▶ the basic open sets of τi are [w]i := {v | w ⪯ v}; and
▶ the basic open sets of τm are [w]m := {v | w ⊑ v}.

Proposition

If M is an IS4-model, then Mt is a bi-topological IS4-model.

Proposition

For all w ∈ W and formula φ,

M,w |= φ ⇐⇒ Mt,w |= φ.
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Mt IS A BI-TOPOLOGICAL IS4-MODEL - I
Proposition

The i-interior of any m-open set is m-open.
That is, Inti(U) = Intm(Inti(U)), for all m-open U.

Proof.

▶ Suppose w ∈ Inti(U).
▶ Let w ⊑ w′ ⪯ w′′.
▶ By backward confluence, there is v such that w ⪯ v ⊑ w′′.
▶ As w ∈ Inti(U), v ∈ U.
▶ w′′ ∈ U since U is m-open.
▶ So [w′]i ⊆ U, and so w′ ∈ Inti(U).
▶ So [w]m ⊆ Inti(U)

▶ We conclude w ∈ Intm(Inti(U)).
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Mt IS A BI-TOPOLOGICAL IS4-MODEL - II

Proposition

The m-closure of any i-open set is i-open.
That is, Inti(Clom(U)) = Clom(U), for all i-open set U.

Proof.

▶ Suppose w ∈ Clom(U).
▶ As w ∈ Clom(U), there is v ∈ U such that w ⊑ v.
▶ Let w′ ⪰ w.
▶ By fwd. confluence, there is v′ such that w′ ⊑ v′ and v ⪯ v′.
▶ As U is i-open, v′ ∈ U.
▶ Thus w′ ∈ Clom(U).
▶ We conclude [w]i ⊆ Clom(U).
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CS4 - AXIOMATIZATION

▶ intuitionistic tautologies;
▶ 4□ := □φ→ □□φ;
▶ 4♢ := ♢♢φ→ ♢φ;
▶ T□ := □φ→ φ;
▶ T♢ := φ→ ♢φ.

(Nec)
φ

□φ
and (MP)

φ φ→ ψ

ψ
.
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CS4 - SEMANTICS

An CS4-model is a tuple M = ⟨W,W⊥,⪯,⊑,V⟩ where:
▶ W⊥ is the set of fallible worlds;
▶ ⊑ is backwards confluent.
▶ M,w |= ♢φ iff for all v if w ⪯ v then there is u such that vRu

and M,u |= φ.
Otherwise like an IS4-model.

Theorem (Mendler, de Paiva)

CS4 is complete w.r.t. CS4-models.
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BI-TOPOLOGICAL CS4-MODELS

A bi-topological IS4-model is a tuple M = ⟨W, τi, τm,V⟩ where:
▶ W is a non-empty set;
▶ τi and τm are topologies over W;
▶ V assigns to each propositional symbol an i-open set.

We require that:
▶ the i-interior of any m-open set is m-open; and
▶ the m-closure of any i-open set is i-open.
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S4I - AXIOMATIZATION

▶ CS4;
▶ CD := □(φ ∨ ψ) → □φ ∨ ♢ψ;
▶ DP := ♢(φ ∨ ψ) → ♢φ ∨ ♢ψ;
▶ N := ¬♢⊥.

(Nec)
φ

□φ
and (MP)

φ φ→ ψ

ψ
.
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S4I - SEMANTICS
An S4I-model is a tuple M = ⟨W,⪯,⊑,V⟩ where:
▶ ⊑ is forwards confluent;
▶ ⊑ is downwards confluent:

w

w′

v

v′

⪯

R

⪯

R

▶ M,w |= □φ iff for all v suif wRv then M, v |= φ.
Otherwise like an IS4-model.

Theorem (Balbiani, Diéguez, Fernández-Duque, McLean)

S4I is complete w.r.t. S4I-models.
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BI-TOPOLOGICAL S4I-MODELS

A bi-topological IS4-model is a tuple M = ⟨W, τi, τm,V⟩ where:
▶ W is a non-empty set;
▶ τi and τm are topologies over W;
▶ V assigns to each propositional symbol an i-open set.

We require that:
▶ the m-interior of any i-open set is i-open; and
▶ the m-closure of any i-open set is i-open.
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GS4 AND GS4c

▶ GS4 = IS4 + (φ→ ψ) ∨ (ψ → φ);
▶ GS4c = GS4 + CD.

The models are obtained by requiring that ⪯ is locally linear:
w ⪯ v and w ⪯ u implies v ⪯ u or w ⪯ v.

Theorem (Balbiani, Diéguez, Fernández-Duque, McLean)

GS4 and GS4c is complete w.r.t. GS4- and GS4c-models,
respectively.
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BI-TOPOLOGICAL S4I-MODELS

A bi-topological GS4-model is an IS4 where τi is hereditarily
extremally disconnected: in every subspace of W, the i-closure
of and i-open set is i-open.

Theorem (Bezhanishvili, Bezhanishvili, Lucero-Bryan,
van Mill)

τi is hereditarily extremally disconnected iff ⪯ is locally linear.
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CONCLUSION

Theorem (P.)

The following hold:
▶ IS4 is complete w.r.t. bi-topological IS4-models;
▶ CS4 is complete w.r.t. bi-topological CS4-models;
▶ S4I is complete w.r.t. bi-topological S4I-models;
▶ GS4 is complete w.r.t. bi-topological GS4-models;
▶ GS4c is complete w.r.t. bi-topological GS4c-models.
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FUTURE WORK

Some ongoing work with David Fernández-Duque and
Konstantinos Papafilipou:
▶ Bi-metric semantics for non-classical variations of S4.
▶ Transfer the topological and metric results to intuitionistic

variations of wK4.
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