Epistemic possibility in Artemov and Protopopescu's Intuitionistic Epistemic Logic Leonardo Pacheco Institute of Science Tokyo September 12, 2025 Available at: leonardopacheco.xyz/slides/alc2025.pdf #### INTUITIONISTIC EPISTEMIC LOGIC Artemov and Protopopescu defined a logic IEL to formalize: Intuitionistic truth implies intuitionistic knowledge. Artemov and Protopopescu defined a logic IEL to formalize: *Intuitionistic truth implies intuitionistic knowledge.* #### IEL consists of - ▶ intuitionistic tautologies; - $K := K(\varphi \to \psi) \to (K\varphi \to K\varphi);$ - $T' := K\varphi \to \neg\neg\varphi;$ closed under modus ponens. #### **BHK** INTERPRETATION - a proof of $\varphi \wedge \psi$ consists in a proof of φ and a proof of ψ ; - a proof of $\varphi \lor \psi$ consists in giving either a proof of φ or a proof of ψ ; - ▶ a proof of $\varphi \to \psi$ consists in a construction which given a proof of φ returns a proof of ψ ; - ▶ there is no proof of \bot . #### Artemov and Protopopescu proposed: ▶ a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof. ## WHAT IS CONCLUSIVE EVIDENCE? The examples given by Artemov and Protopopescu are: - existential generalization, - zero-knowledge proof, - testimony of authority, - classified sources. #### **SEMANTICS** An IEL model is a tuple $M = \langle W, \preceq, R, V \rangle$ where: - $ightharpoonup \leq$ is a preorder on W; - \blacktriangleright *V* is monotone w.r.t. \preceq ; - ▶ wRv implies $w \leq v$; - \blacktriangleright $w \leq v$ implies, for all u, if vRu then wRu; - ightharpoonup for all w there is v such that wRv. #### Define: • $w \models K\varphi$ iff, for all v, wRv implies $v \models \varphi$. ## Proposition *If* $w \models \varphi$ *and* $w \leq v$, then $v \models \varphi$. # Proposition Co-reflection implies the following: - ▶ $\mathsf{IEL} \vdash \varphi \text{ implies } \mathsf{IEL} \vdash K\varphi;$ - ▶ IEL $\vdash K\varphi \to KK\varphi$; - ▶ IEL $\vdash \neg K\varphi \to K\neg K\varphi$. ### CONSTRUCTIVE POSSIBILITY #### Definition $w \models \hat{K}\varphi$ holds iff for all $v \succeq w$, there is u such that vRu and $u \models \varphi$. ### Proposition If $w \models \hat{K}\varphi$ and $w \leq v$, then $v \models \hat{K}\varphi$. ### Possibility implies Double Negation # Proposition For all IEL model M and world w, if $w \models \hat{K}P$ then $w \models \neg \neg P$. #### Proof. We have $\neg\neg\varphi$ iff for all $v \succeq w$, there is u such that $v \preceq u$ and $u \models \varphi$. From $R \subseteq \preceq$, we have $\hat{K}P \rightarrow \neg \neg P$. ### DOUBLE NEGATION IMPLIES POSSIBILITY ## Proposition For all IEL model M and world w, if $w \models \neg \neg P$ then $w \models \hat{K}P$. #### Proof. #### By contradiction: - ▶ If $\hat{K}P$ fails at w, there is v such that $w \leq v$ and, for all v', vRv' implies $v' \not\models P$. - ▶ If $\neg \neg P$ holds at w, there is u such that $v \leq u$ and $u \models P$. - ightharpoonup uR is not empty; fix $u' \in uR$. - ▶ Since $R \subseteq \preceq$, $u' \models P$. - ightharpoonup As $v \prec u$, $uR \subseteq vR$. - ▶ Therefore $v \leq u' \not\models P$. ## Proposition For all IEL model M and world w, $$M, w \models \hat{K}P \text{ iff } M, w \models \neg \neg P.$$ Epistemic possibility is impossibility of proof of negation. ### FUTURE WORK #### Alternative semantics where: - ► *K* is interpreted as a constructive diamond; - strong completeness holds; - finite model property holds; - ► a Glivenko-style theorem holds. (Ongoing work with Igor Sedlár.) ## THANK YOU! For more pointers and details, see ▶ Pacheco, "Epistemic possibility in Artemov and Protopopescu's intuitionistic epistemic logic", RIMS Kôkyûroku No.2293, 2024.