Epistemic possibility in Artemov and Protopopescu's Intuitionistic Epistemic Logic

Leonardo Pacheco Institute of Science Tokyo

September 12, 2025 Available at: leonardopacheco.xyz/slides/alc2025.pdf

INTUITIONISTIC EPISTEMIC LOGIC

Artemov and Protopopescu defined a logic IEL to formalize: Intuitionistic truth implies intuitionistic knowledge.

Artemov and Protopopescu defined a logic IEL to formalize: *Intuitionistic truth implies intuitionistic knowledge.*

IEL consists of

- ▶ intuitionistic tautologies;
- $K := K(\varphi \to \psi) \to (K\varphi \to K\varphi);$
- $T' := K\varphi \to \neg\neg\varphi;$

closed under modus ponens.

BHK INTERPRETATION

- a proof of $\varphi \wedge \psi$ consists in a proof of φ and a proof of ψ ;
- a proof of $\varphi \lor \psi$ consists in giving either a proof of φ or a proof of ψ ;
- ▶ a proof of $\varphi \to \psi$ consists in a construction which given a proof of φ returns a proof of ψ ;
- ▶ there is no proof of \bot .

Artemov and Protopopescu proposed:

▶ a proof of $K\varphi$ is conclusive evidence of verification that φ has a proof.

WHAT IS CONCLUSIVE EVIDENCE?

The examples given by Artemov and Protopopescu are:

- existential generalization,
- zero-knowledge proof,
- testimony of authority,
- classified sources.

SEMANTICS

An IEL model is a tuple $M = \langle W, \preceq, R, V \rangle$ where:

- $ightharpoonup \leq$ is a preorder on W;
- \blacktriangleright *V* is monotone w.r.t. \preceq ;
- ▶ wRv implies $w \leq v$;
- \blacktriangleright $w \leq v$ implies, for all u, if vRu then wRu;
- ightharpoonup for all w there is v such that wRv.

Define:

• $w \models K\varphi$ iff, for all v, wRv implies $v \models \varphi$.

Proposition

If $w \models \varphi$ *and* $w \leq v$, then $v \models \varphi$.

Proposition

Co-reflection implies the following:

- ▶ $\mathsf{IEL} \vdash \varphi \text{ implies } \mathsf{IEL} \vdash K\varphi;$
- ▶ IEL $\vdash K\varphi \to KK\varphi$;
- ▶ IEL $\vdash \neg K\varphi \to K\neg K\varphi$.

CONSTRUCTIVE POSSIBILITY

Definition

 $w \models \hat{K}\varphi$ holds iff

for all $v \succeq w$, there is u such that vRu and $u \models \varphi$.

Proposition

If $w \models \hat{K}\varphi$ and $w \leq v$, then $v \models \hat{K}\varphi$.

Possibility implies Double Negation

Proposition

For all IEL model M and world w, if $w \models \hat{K}P$ then $w \models \neg \neg P$.

Proof.

We have $\neg\neg\varphi$ iff

for all $v \succeq w$, there is u such that $v \preceq u$ and $u \models \varphi$.

From $R \subseteq \preceq$, we have $\hat{K}P \rightarrow \neg \neg P$.

DOUBLE NEGATION IMPLIES POSSIBILITY

Proposition

For all IEL model M and world w, if $w \models \neg \neg P$ then $w \models \hat{K}P$.

Proof.

By contradiction:

- ▶ If $\hat{K}P$ fails at w, there is v such that $w \leq v$ and, for all v', vRv' implies $v' \not\models P$.
- ▶ If $\neg \neg P$ holds at w, there is u such that $v \leq u$ and $u \models P$.
- ightharpoonup uR is not empty; fix $u' \in uR$.
- ▶ Since $R \subseteq \preceq$, $u' \models P$.
- ightharpoonup As $v \prec u$, $uR \subseteq vR$.
- ▶ Therefore $v \leq u' \not\models P$.

Proposition

For all IEL model M and world w,

$$M, w \models \hat{K}P \text{ iff } M, w \models \neg \neg P.$$

Epistemic possibility is impossibility of proof of negation.

FUTURE WORK

Alternative semantics where:

- ► *K* is interpreted as a constructive diamond;
- strong completeness holds;
- finite model property holds;
- ► a Glivenko-style theorem holds.

(Ongoing work with Igor Sedlár.)

THANK YOU!

For more pointers and details, see

▶ Pacheco, "Epistemic possibility in Artemov and Protopopescu's intuitionistic epistemic logic", RIMS Kôkyûroku No.2293, 2024.