Collapsing Constructive and Intuitionistic **Modal Logics**

Leonardo Pacheco *Institute of Science Tokyo*

28 November 2024

Available at: leonardopacheco.xyz/slides/aal2024.pdf

INTRODUCTION

INTRODUCTION

Theorem (Das, Marin)

CK and **IK** do not prove the same \lozenge -free formulas:

- ightharpoonup CK $ightharpoonup \neg \Box \bot \rightarrow \Box \bot$, and
- ightharpoonup $|\mathsf{K}| \vdash \neg \neg \Box \bot \to \Box \bot$

Theorem (P.)

CKB and IKB prove the same formulas.

THE LOGIC CK

CK is the least set of formulas containing:

- ► intuitionistic tautologies;
- $\blacktriangleright K_{\square} := \square(\varphi \to \psi) \to (\square\varphi \to \square\psi);$

and closed under

$$(\mathbf{Nec}) \; \frac{\varphi}{\Box \varphi} \quad \text{ and } \quad (\mathbf{MP}) \; \frac{\varphi \quad \varphi \to \psi}{\psi}.$$

THE LOGICS CKB, IK, AND IKB

Let

- $ightharpoonup FS := (\Diamond \varphi \to \Box \psi) \to \Box (\varphi \to \psi);$
- $ightharpoonup N := \neg \Diamond \bot;$
- ▶ $B_{\square} := P \to \square \Diamond P$; and
- $\blacktriangleright B_{\Diamond} := \Diamond \Box P \to P.$

Then:

- ightharpoonup CKB := CK + { B_{\square} , B_{\Diamond} };
- ightharpoonup IK := CK + {FS, DP, N}; and
- ▶ $\mathsf{IKB} := \mathsf{IK} + \{B_{\square}, B_{\Diamond}\} = \mathsf{CKB} + \{FS, DP, N\}.$

CK-MODELS

A CK-model is a tuple $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ where:

- ► *W* is the set of *possible worlds*;
- ▶ $W^{\perp} \subseteq W$ is the set of *fallible worlds*;
- ▶ the *intuitionistic relation* \leq is a reflexive and transitive relation over W;
- ightharpoonup the *modal relation R* is a relation over *W*;
- ▶ $V : \text{Prop} \to \mathcal{P}(W)$ is a valuation function.

We require:

- ▶ if $w \leq v$ and $w \in V(P)$, then $v \in V(P)$;
- ▶ for all $P \in \text{Prop}$, $W^{\perp} \subseteq V(P)$;
- ▶ if $w \in W^{\perp}$ and either $w \leq v$ or wRv, then $v \in W^{\perp}$.

VALUATION

- $ightharpoonup M, w \models P \text{ iff } w \in V(P);$
- \blacktriangleright $M, w \models \bot \text{ iff } w \in W^{\bot};$
- $ightharpoonup M, w \models \varphi \land \psi \text{ iff } M, w \models \varphi \text{ and } M, w \models \psi;$
- $ightharpoonup M, w \models \varphi \lor \psi \text{ iff } M, w \models \varphi \text{ or } M, w \models \psi;$
- ► $M, w \models \varphi \rightarrow \psi$ iff, for all $v \in W$, if $w \leq v$ and $M, v \models \varphi$, then $M, v \models \psi$;
- ► $M, w \models \Box \varphi$ iff, for all $v, u \in W$, if $w \leq v$ and vRu, then $M, u \models \varphi$; and
- ▶ $M, w \models \Diamond \varphi$ iff, for all $v \in W$, if $w \leq v$ then, there is u such that vRu and $M, u \models \varphi$.

IK-MODELS

An IK-model is a CK-model where:

- $ightharpoonup W^{\perp} = \emptyset;$
- ► *R* is forward and backward confluent:

An IKB-model is an IK-model where *R* is symmetric.

MAIN THEOREM

Theorem

For all modal formula φ , the following are equivalent:

- 1. CKB $\vdash \varphi$;
- 2. IKB $\vdash \varphi$; and
- 3. IKB $\models \varphi$.

SYMMETRY IMPLIES CONFLUENCES COINCIDE

Lemma

Let M be a **CK**-*model where the modal relation* \sim *is symmetric.* Then \sim is forward confluent iff \sim is backward confluent.

MOTIVATING LEMMAS

Lemma

There is a CK-model $M = \langle W, W^{\perp}, \preceq, \sim, V \rangle$ *and* $w \in W$ *such that:*

- ightharpoonup ~ is a symmetric relation;
- $ightharpoonup B_{\square} := P \to \square \lozenge P \text{ does not hold at } w.$

$$w \models P$$

$$\sim \downarrow$$

$$v \stackrel{\preceq}{\longrightarrow} v$$

EXISTING RESULTS

Theorem (Arisaka, Das, Straßburger)

 $CKB \vdash DP$ and $CKB \vdash N$.

Theorem (De Groot, Shillito, Clouston)

Let $M = \langle W, W^{\perp}, \preceq, R, V \rangle$ *be a* **CK**-model. Then:

- ► Suppose that, for all $w, v \in W$, wRv, and $v \in W^{\perp}$ implies $w \in W^{\perp}$. Then $M \models N$.
- ► Suppose that R is forward and backward confluent. Then $M \models DP$ and $M \models FS$.

CANONICAL MODEL FOR CKB

A (consistent) CKB-theory Γ is a set of formulas such that:

- ightharpoonup Γ contains all the axioms of CKB and is closed under MP;
- if $\varphi \lor \psi \in \Gamma$, then $\varphi \in \Gamma$ or $\psi \in \Gamma$;
- $ightharpoonup \perp \not \in \Gamma.$

Definition

The CKB-canonical model is $M_c := \langle W_c, W_c^{\perp}, \preceq_c, \sim_c, V_c \rangle$ where:

- $W_c := \{ \Gamma \mid \Gamma \text{ is a CKB-theory} \};$
- $ightharpoonup W_c^{\perp} = \emptyset;$
- $\blacktriangleright \Gamma \preceq_{c} \Delta \text{ iff } \Gamma \subseteq \Delta;$
- $\blacktriangleright \Gamma \sim_c \Delta \text{ iff } \{\varphi \mid \Box \varphi \in \Gamma\} \subseteq \Delta \text{ and } \Delta \subseteq \{\varphi \mid \Diamond \varphi \in \Gamma\};$
- ightharpoonup $\Gamma \in V_c(\varphi)$ iff $P \in \Gamma$.

TRUTH LEMMA - I

 B_{\square} and B_{\Diamond} are used to prove:

Lemma

The CKB-canonical model M_c is an IKB-model.

The following lemma uses standard techniques:

Lemma

Let M_c be the CKB-canonical model. For all formula φ and for all CKB-theory Γ ,

$$M_c, \Gamma \models \varphi \text{ iff } \varphi \in \Gamma.$$

While, in general, constructive and intuitionistic versions of the same logic do not coincide, we have:

Theorem (P.)

CKB and IKB prove the same formulas.

This result extends to logics proving the axiom *B*. For example:

Corollary

CS5 = IS5.

AN OPEN PROBLEM

Characterize necessary and sufficient conditions for CK-frames to validate the axioms in the modal cube:

- $ightharpoonup B_{\square} := P \to \square \lozenge P, B_{\lozenge} := \lozenge \square P \to P;$
- ▶ $4_{\square} := \square \square P \rightarrow \square P, 4_{\Diamond} := \Diamond \Diamond P \rightarrow \Diamond P;$
- $\blacktriangleright \ 5_{\square} := \Diamond P \to \square \Diamond P, 5_{\Diamond} := \Diamond \square P \to \square P;$
- $ightharpoonup T_{\square} := \square P \to P, T_{\lozenge} := P \to \lozenge P;$ and
- $\blacktriangleright D := \Box P \to \Diamond P.$

- ARISAKA, DAS, STRASSBURGER, On Nested Sequents for Constructive Modal Logics, Logical Methods in Computer Science, vol. 11 (2015), no. 3.
- DAS, MARIN, On Intuitionistic Diamonds (and Lack Thereof), Lecture Notes in Computer Science, vol. 14278 (2023), pp. 283-301.
- DE GROOT, SHILLITO, CLOUSTON, Semantical Analysis of Intuitionistic Modal Logics between CK and IK, arXiv:2408.00262, 2024.
- PACHECO, Collapsing Constructive and Intuitionistic Modal Logics, arXiv:2408.16428, 2024.