
INTRODUCTION DEFINITIONS MOTIVATING LEMMAS PROOF OUTLINE CONCLUSION

Collapsing Constructive and Intuitionistic
Modal Logics

Leonardo Pacheco
Institute of Science Tokyo

28 November 2024

Available at: leonardopacheco.xyz/slides/aal2024.pdf



INTRODUCTION DEFINITIONS MOTIVATING LEMMAS PROOF OUTLINE CONCLUSION

INTRODUCTION

Theorem (Das, Marin)

CK and IK do not prove the same ♢-free formulas:
▶ CK ̸⊢ ¬¬□⊥ → □⊥, and
▶ IK ⊢ ¬¬□⊥ → □⊥

Theorem (P.)

CKB and IKB prove the same formulas.
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THE LOGIC CK

CK is the least set of formulas containing:
▶ intuitionistic tautologies;
▶ K□ := □(φ→ ψ) → (□φ→ □ψ);
▶ K♢ := □(φ→ ψ) → (♢φ→ ♢ψ);

and closed under

(Nec)
φ

□φ
and (MP)

φ φ→ ψ

ψ
.
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THE LOGICS CKB, IK, AND IKB

Let
▶ FS := (♢φ→ □ψ) → □(φ→ ψ);
▶ DP := ♢(φ ∨ ψ) → ♢φ ∨ ♢ψ;
▶ N := ¬♢⊥;
▶ B□ := P → □♢P; and
▶ B♢ := ♢□P → P.

Then:
▶ CKB := CK + {B□,B♢};
▶ IK := CK + {FS,DP,N}; and
▶ IKB := IK + {B□,B♢} = CKB + {FS,DP,N}.
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CK-MODELS

A CK-model is a tuple M = ⟨W,W⊥,⪯,R,V⟩ where:
▶ W is the set of possible worlds;
▶ W⊥ ⊆ W is the set of fallible worlds;
▶ the intuitionistic relation ⪯ is a reflexive and transitive

relation over W;
▶ the modal relation R is a relation over W;
▶ V : Prop → P(W) is a valuation function.

We require:
▶ if w ⪯ v and w ∈ V(P), then v ∈ V(P);
▶ for all P ∈ Prop, W⊥ ⊆ V(P);
▶ if w ∈ W⊥ and either w ⪯ v or wRv, then v ∈ W⊥.
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VALUATION

▶ M,w |= P iff w ∈ V(P);
▶ M,w |= ⊥ iff w ∈ W⊥;
▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ;
▶ M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ;
▶ M,w |= φ→ ψ iff, for all v ∈ W, if w ⪯ v and M, v |= φ,

then M, v |= ψ;
▶ M,w |= □φ iff, for all v,u ∈ W, if w ⪯ v and vRu, then

M,u |= φ; and
▶ M,w |= ♢φ iff, for all v ∈ W, if w ⪯ v then, there is u such

that vRu and M,u |= φ.
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IK-MODELS

An IK-model is a CK-model where:
▶ W⊥ = ∅;
▶ R is forward and backward confluent:

w w′

v v′

⪯

R

⪯

R

w w′

v v′

⪯

R

⪯

R

An IKB-model is an IK-model where R is symmetric.
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MAIN THEOREM

Theorem
For all modal formula φ, the following are equivalent:

1. CKB ⊢ φ;
2. IKB ⊢ φ; and
3. IKB |= φ.

IKB ⊢ φCKB ⊢ φ

IKB |= φ

So
undnes

s

By definition.

Canonical M
odel
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SYMMETRY IMPLIES CONFLUENCES COINCIDE

Lemma
Let M be a CK-model where the modal relation ∼ is symmetric.
Then ∼ is forward confluent iff ∼ is backward confluent.

w w′

v v′

⪯

∼

⪯

∼

w w′

v v′

⪯

∼

⪯

∼
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SYMMETRY IMPLIES CONFLUENCE IS NECESSARY

Lemma
There is a CK-model M = ⟨W,W⊥,⪯,∼,V⟩ and w ∈ W such that:
▶ ∼ is a symmetric relation;
▶ B□ := P → □♢P does not hold at w.

w |= P

v v′

∼
⪯
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EXISTING RESULTS

Theorem (Arisaka, Das, Straßburger)

CKB ⊢ DP and CKB ⊢ N.

Theorem (De Groot, Shillito, Clouston)

Let M = ⟨W,W⊥,⪯,R,V⟩ be a CK-model. Then:
▶ Suppose that, for all w, v ∈ W, wRv, and v ∈ W⊥ implies

w ∈ W⊥. Then M |= N.
▶ Suppose that R is forward and backward confluent. Then

M |= DP and M |= FS.
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CANONICAL MODEL FOR CKB

A (consistent) CKB-theory Γ is a set of formulas such that:
▶ Γ contains all the axioms of CKB and is closed under MP;
▶ if φ ∨ ψ ∈ Γ, then φ ∈ Γ or ψ ∈ Γ;
▶ ⊥ ̸∈ Γ.

Definition
The CKB-canonical model is Mc := ⟨Wc,W⊥

c ,⪯c,∼c,Vc⟩ where:
▶ Wc := {Γ | Γ is a CKB-theory};
▶ W⊥

c = ∅;
▶ Γ ⪯c ∆ iff Γ ⊆ ∆;
▶ Γ ∼c ∆ iff {φ | □φ ∈ Γ} ⊆ ∆ and ∆ ⊆ {φ | ♢φ ∈ Γ};
▶ Γ ∈ Vc(φ) iff P ∈ Γ.
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TRUTH LEMMA - I

B□ and B♢ are used to prove:

Lemma
The CKB-canonical model Mc is an IKB-model.

The following lemma uses standard techniques:

Lemma
Let Mc be the CKB-canonical model.
For all formula φ and for all CKB-theory Γ,

Mc,Γ |= φ iff φ ∈ Γ.
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CONCLUSION

While, in general, constructive and intuitionistic versions of the
same logic do not coincide, we have:

Theorem (P.)

CKB and IKB prove the same formulas.

This result extends to logics proving the axiom B. For example:

Corollary

CS5 = IS5.
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AN OPEN PROBLEM

Characterize necessary and sufficient conditions for CK-frames
to validate the axioms in the modal cube:
▶ B□ := P → □♢P, B♢ := ♢□P → P;
▶ 4□ := □□P → □P, 4♢ := ♢♢P → ♢P;
▶ 5□ := ♢P → □♢P, 5♢ := ♢□P → □P;
▶ T□ := □P → P, T♢ := P → ♢P; and
▶ D := □P → ♢P.
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