Towards a characterization of the μ -calculus' collapse to modal logic

Leonardo Pacheco TU Wien (contains j.w.w. Kazuyuki Tanaka)

10 November 2023

Available at: leonardopacheco.xyz/slides/aal2023.pdf

FIXED-POINTS IN MODAL LOGIC

Provability logic

If *X* is in the scope of some \square in $\varphi(X)$, then there is ψ such that

$$\mathsf{GL} \vdash \psi \leftrightarrow \varphi(\psi).$$

Epistemic logic

Common knowledge is defined as

$$C\varphi := \varphi \wedge E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \cdots$$

where *E* is the "everyone knows" modality. It can be thought as the greatest fixed-point of the operator

$$X \mapsto EX$$
.

THE μ -CALCULUS

The μ -formulas are generated by the grammar:

$$\varphi := P \mid \neg P \mid X \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \Box \varphi \mid \Diamond \varphi \mid \mu X.\varphi \mid \nu X.\varphi.$$

Let $M = \langle W, R, V \rangle$ be a Kripke model.

The semantics for μ and ν are as follows:

- $M, w \models \mu X. \varphi$ iff w is in the least fixed point of $\Gamma_{\varphi(X)}$;
- ▶ $M, w \models \nu X. \varphi$ iff w is in the greatest fixed point of $\Gamma_{\varphi(X)}$, where

$$\Gamma_{\varphi(X)}(A) \to \|\varphi(A)\|^M$$
.

ALTERNATION DEPTH

The valuation of νX and μY depend on each other:

$$\nu X. \underbrace{\mu Y. \underbrace{(P \land \Diamond X) \lor (\neg P \land \Diamond Y)}_{\text{scope of } \nu X}}$$

Alternation depth of φ

Maximum number of codependent alternating μ and ν operators in φ .

Alternation hierarchy

Classifies μ -formulas with respect to their alternation depth.

APPROXIMATING FIXED-POINTS

Consider

$$\nu X \mu Y \cdot \varphi := \nu X \cdot \mu Y \cdot (P \wedge \Diamond X) \vee (\neg P \wedge \Diamond Y).$$

To evaluate this formula over $M = \langle W, R, V \rangle$, do as follows:

- ▶ Start with $X_0 := W$.
- $ightharpoonup Y_0$ is the least-fixed point of $\Gamma_{\varphi(X_0,Y)}$.
- ► Set $X_1 := \|\varphi(X_0, Y_0)\|^M$.
- Y_1 is the least-fixed point of $\Gamma_{\varphi(X_1,Y)}$.
- ► Set $X_2 := \|\varphi(X_1, Y_1)\|$.
- **>** · · ·
- ► Repeat until $X_{\alpha} = X_{\alpha+1}$.
- $\blacktriangleright \|\nu X\mu Y.\varphi\|^M = X_\alpha$

GAME SEMANTICS — EVALUATION GAMES

Verifier and Refuter discuss whether $\Box \mu X.P \lor \Diamond X$ holds at w.

 $V : \Box \mu X.P \lor \Diamond X \text{ holds at } w$

 $R: \mu X.P \lor \Diamond X$ fails at v_1

 $V: P \vee \Diamond X \text{ holds at } v_1$

 $V : \Diamond X \text{ holds at } v_1$

V:X holds at v_2

 $V : P \lor \Diamond X \text{ holds at } v_2$

 $V : P \text{ holds at } v_2$

On an infinite run, if the variable with biggest scope which repeats infinitely often is ν , then Verifier wins.

▶ Key point: on an infinite run, what matters is the *tail*.

GL HAS THE FIXED-POINT PROPERTY

$$\mathsf{GL} := \mathsf{K} + \Box(\Box P \to P) \to \Box P$$

Theorem (de Jongh, Sambin)

If $\varphi(X)$ *is a formula where* X *is in the scope of some* \square *, then there is* ψ *such that*

$$\mathsf{GL} \vdash \psi \leftrightarrow \varphi(\psi).$$

S5 DOES NOT HAVE THE FIXED-POINT PROPERTY

Theorem (Sacchetti)

Let L be a logic with the fixed-point property. Then every finite frame for L is reverse well-founded.

Therefore S5 does not have the fixed-point property. However, the μ -calculus collapses to modal logic over S5:

Theorem (Alberucci, Facchini)

Over S5, every μ -formula is equivalent to a formula without fixed-point operators.

Theorem (P., Tanaka)

The alternation hierarchy collapses to modal logic over \$4.3.2.

We may suppose an \$4.3.2 frame can be divided into two equivalence classes:

At any long enough game, we will have equivalent positions:

$$\langle \nu X.\varphi, w \rangle \to \cdots \to \langle \Box \psi, v \rangle \to \cdots \to \langle \Box \psi, v' \rangle \to \cdots \to \langle \Box \psi, v'' \rangle \to \cdots$$

We can use this fact to show that $\varphi(\varphi(\varphi(\top))) \equiv \varphi(\varphi(\varphi(\top)))$.

GENERALIZING THE PROOF

Definition

F is an *n*-pigeonhole frame iff for all sequence $w_0 R^* w_1 R^* \cdots R^* w_n$, there is $i < j \le n$ such that $w_i R = w_i R$.

Definition

The μ -calculus n-uniformly collapses to modal logic over F iff, for all μ -formula φ with X positive,

$$\mu X.\varphi \equiv \varphi^n(\bot)$$
 and $\nu X.\varphi \equiv \varphi^n(\top)$.

Theorem

Fix $n \in \mathbb{N}$. Let **F** be a class of Kripke frames such that all frames in **F** are n-pigeonhole frames. Then the μ -calculus (n + 1)-uniformly collapses to modal logic over F.

CHARACTERIZING THE COLLAPSE

Our theorem does not reverse:

Proposition

Suppose that the μ -calculus (n+1)-uniformly collapses to modal logic over F. It does not follow that F is n-pigeonhole.

Proof.

$$\mathcal{F} \xrightarrow{w_0 \to w_0 \to w_0 \to w_0 \to w_n}$$

- ▶ By the pigeonhole principle, $\varphi^{n+1}(\bot) \equiv \varphi^{n+2}(\bot)$ over F_{n+1} . Therefore F_{n+1} is (n+1)-uniformly collapsing.
- ▶ On the other hand, $w_0R_{n+1}w_1R_{n+1}...R_{n+1}w_n$ witnesses that F_{n+1} is not n-pigeonhole.

CHARACTERIZING THE COLLAPSE

We are currently trying to get a good enough reversal:

Question

Let F be a Kripke frame such that the μ -calculus n-uniformly collapses to modal logic over F. Is F is n-pigeonhole?

If the answer is yes, then:

n-uniformly collapse \Rightarrow *n*-pigeonhole \Rightarrow (*n*+1)-uniformly collapse.

(The answer is yes for n = 1 and n = 2.)

COMMON KNOWLEDGE

► Common knowledge is defined by

$$C\varphi := \varphi \wedge E\varphi \wedge EE\varphi \wedge EEE\varphi \wedge \cdots$$
$$\equiv \mu X. \varphi \wedge EX.$$

where *E* is the "everyone knows" modality.

- ► If there are two or more agents, common knowledge is not equivalent to a modal formula.
- ► The μ -calculus does not collapse if we have two or more agents:

Theorem

The μ -calculus' alternation hierarchy is strict over $S5_2$ frames.

PARITY GAMES

- ▶ Two players \exists and \forall move a token in a graph.
- ► Each vertex is labeled with a natural number and an owner.
- ▶ \exists wins a run $\rho = v_0, v_1, v_2, \dots$ iff the greatest label which appears infinitely often in ρ is even.
- ▶ Key point: on an infinite run, what matters is the *tail*.
- Evaluation games for the μ -calculus are parity games.

PARITY GAMES AS KRIPKE MODELS

 W_n describes the winning region for \exists in parity games where n is the maximum parity:

$$W_n := \eta X_n \dots \nu X_0. \bigvee_{0 < j < n} [(P_j \wedge P_{\exists} \wedge \Diamond X_j) \vee (P_j \wedge P_{\forall} \wedge \Box X_j)].$$

Theorem (Bradfield)

Let $n \in \omega$, then W_n is not equivalent to any formula with less alternation.

Parity games as \$5₂ models

BIMODAL WINNING REGION FORMULAS

$$W'_n := \eta X_n \dots \nu X_0. \bigvee_{0 \le j \le n} [(P_j \wedge P_{\exists} \wedge \blacklozenge X_j) \vee (P_j \wedge P_{\forall} \wedge \blacksquare X_j)].$$

Where

- $\bullet \varphi := \mu Y. \operatorname{pre}_0 \wedge \operatorname{bd} \wedge \Diamond_0(\operatorname{nxt}_0 \wedge \operatorname{pre}_1 \wedge \operatorname{bd} \wedge \Diamond_1(\operatorname{nxt}_1 \wedge \operatorname{bd} \wedge ((Y \wedge \neg \operatorname{st}) \vee (\varphi \wedge \operatorname{st}))); \text{ and }$
- $\blacksquare \varphi := \nu Y. \operatorname{pre}_0 \wedge \operatorname{bd} \to \Box_0(\operatorname{nxt}_0 \wedge \operatorname{pre}_1 \wedge \operatorname{bd} \to \Box_1(\operatorname{nxt}_1 \wedge \operatorname{bd} \to ((Y \wedge \neg \operatorname{st}) \wedge (\varphi \wedge \operatorname{st})))),$

GENERALIZING THE NON-COLLAPSE OVER FUSIONS

The strictness over S5₂ can be generalized to:

Theorem

The μ -calculus' alternation hierarchy is strict over interesting fusions of modal logics.

AN OPEN PROBLEM

When does the μ -calculus' alternation hierarchy collapse over an *interesting* multimodal logic?

Example (Ignatiev)

The fixed-point theorem holds over GLP.

Example (P.)

The μ -calculus collapses to modal logic over MIPQ (a.k.a. IS5).

Non-example

The μ -calculus collapses to modal logic over epistemic logic with knowledge and belief for only one agent.

THANK YOU!

- ► The μ -calculus (n + 1)-uniformly collapses to modal logic over n-pigeonhole frames.
- ► Are *n*-uniformly collapsing frames also *n*-pigeonhole?
- ► The μ -calculus' alternation hierarchy is strict over most multimodal settings.
- ▶ Which restriction do we need to add between the modalities for the μ -calculus to collapse?

REFERENCES

- [1] L. Alberucci, A. Facchini, "The modal μ -calculus hierarchy over restricted classes of transition systems", 2009.
- [2] J.C. Bradfield, "Simplifying the modal mu-calculus alternation hierarchy", 1998.
- [3] K.N. Ignatiev, "On Strong Provability Predicates and the Associated Modal Logics", 1993
- [4] L. Pacheco, "Exploring the difference hierarchies on μ -calculus and arithmetic—from the point of view of Gale–Stewart games", PhD Thesis, 2023.
- [5] L. Pacheco, "Game semantics for the constructive μ -calculus", arXiv:2308.16697.
- [6] L. Pacheco, K. Tanaka, "The Alternation Hierarchy of the μ -calculus over Weakly Transitive Frames", 2022.
- [7] L. Sacchetti, "The fixed point property in modal logic", 2001.