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Chapter 1

Introduction

In this thesis we present the weak µ-calculus and weak µ-arithmetic and their
alternations hierarchies. We also prove a refinement of a result in Reverse
Mathematics related to the µ-arithmetic and the determinacy of the finite
levels of the difference hierarchy of Σ0

2.

On chapter 2 we explain the basic concepts used in this thesis and some
results in the literature. The main concepts are the µ-calculus and the µ-
arithmetic. The µ-calculus is an extension of modal logic via fixed points.
Its main point is the ability to write formulas expressing the idea of “even-
tually” and “always”. For example µX.♦X ∨P means “eventually P holds”
and νX.�X ∧ P is means “P always holds”. The µ-calculus has two opera-
tors µ and ν used to express fixed points. By alternating these two types of
operators, we obtain more complex formulas and we can define hierarchies
counting these alternations. We prove that the alternation hierarchies are
strict. The µ-arithmetic is obtained by adding these fixpoints to first-order
arithmetic and also has a similarly defined alternation hierarchy with the
same properties as the alternation hierarchy for the µ-calculus. These sys-
tems are deeply connected. We also consider transfinite versions of these
systems by adding recusive conjunction and disjunction of formulas. In the
second half of this section, we give a short overview of Gale-Steward games,
determinacy, and the difference hierarchy for Σ0

2. Furthermore we show the
connection between the µ-arithmetic and the difference hierarchy for Σ0

2. At
the end of chapter 2, we shortly introduce Reverse Mathematics and present
some of its connections with determinacy.

On chapter 3 we define the weak µ-calculus and the weak µ-arithmetic.
These are weaker versions of the systems defined in Chapter 2 restricting
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the interation between µ and ν operators. The sets definable in these weak
systems are all definable by formulas in a low level of the alternation hierarchy
for the full systems. At last, we show the connection between the weak
systems and the difference hierarchy for Σ0

1.
On chapter 4 we refine a result of Möllerfeld and Heinatsch. This re-

sult states that a formalized version of the µ-arithmetic inside second-order
arithmetic is equivalent to the determinacy of games with payoff in the finite
levels of the difference hierarchy for Σ0

2. Here we define subsystems of the
µ-arithmetic limiting the ability to apply the fixed point operators and show
that each one of these subsystems is equivalent to determinacy for some level
of the determinacy hierarchy for Σ0

2.
Chapters 3 and 4 are not directly related, but the proofs in them share

some ideas. Also, at the end of chapters 3 and 4 we present some questions
we plan to consider on future work.
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Chapter 2

Preliminaries

2.1 Modal logic

The modal logic is an extention of the propositional logic. Its main feature
is the ability to express “necessity” and “possibility”.

Fix a set of propositional symbols Prop and a set of propositional vari-
ables V ar. We define the formulas of modal logic by the following grammar:

ϕ := P | ¬P | X | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ.

Here P and ¬P are a propositional symbol and the negation of a propositional
symbol, respectively. X is a propositional variable. Let ϕ and ψ be formulas
of modal logic, then ϕ(X\ψ) is defined to be ϕ with all occurences of X
substituted by ψ. Note that, by this definition, if X does not appear in ϕ then
ϕ(X\ψ) is just ϕ. ∧ and ∨ have their usual meaning from propositional logic.
The modal operators � and ♦ denote necessity and possibility respectively,
we will explain their meaning after defining the models of modal logic.

Our models are labeled transition systems of the form S = (S,E, ρ) where
S is the set of states, E ⊆ S × S are the transitions and ρ : Prop → P(S)
assigns to each proposition P the states in which P is valid. Each state of
our transition symbols can be though as a valuation of propositional logic.
We define a valuation to be a function V : V ar → P(S) assingning to each
propositional variable X the states where it holds.

Example 1. Let S = {s0, s1},E = {〈s0, s0〉, 〈s0, s1〉} and ρ(P ) = {s0}. We
can draw this transition system as:
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s0

P

s1

¬P

Given a transition system S, a valuation V and a modal formula ϕ, ‖ϕ‖SV
denotes the states s ∈ S where ϕ holds. The meaning for ∧,∨ and ¬ are
the same as the meaning in propositional logic. s ∈ ‖�ϕ‖SV means that
t ∈ ‖ϕ‖SV for all states t ∈ S which are accessible from s (i.e., 〈s, t〉 ∈ E).
s ∈ ‖♦ϕ‖SV means that t ∈ ‖ϕ‖SV for some state t ∈ S which is accessible
from s. Formally, we have:

Definition 1 (Kripke Semantics). Given a transition system S and a valu-
ation V : V ar → P(S), we define

‖P‖SV = ρ(P )

‖X‖SV = V (X)

‖¬ϕ‖SV = S \ ‖ϕ‖SV
‖ϕ ∧ ψ‖SV = ‖ϕ‖SV ∩ ‖ψ‖SV
‖ϕ ∨ ψ‖SV = ‖ϕ‖SV ∪ ‖ψ‖SV
‖�ϕ‖SV = {s|∀t ∈ S.〈s, t〉 ∈ E =⇒ t ∈ ‖ϕ‖SV }
‖♦ϕ‖SV = {s|∃t ∈ S.〈s, t〉 ∈ E ∧ t ∈ ‖ϕ‖SV }

Note that � and ♦ are dual, i.e., for all formulas ¬�ϕ is equal to ♦¬ϕ. If
the context permits, we omit S and V in the notation above.

As we can see from the definition above, the meaning of necessity and
possibility can change quite a lot depending on the transition system under
consideration. Indeed, modal logic can also be used to talk, for example,
about time, epistemology(knowledge) and deontology(obligation). For more
information about this and modal logic in general, see [1]. Also note that we
can extend the modal logic to include more modal operators.

Before ending this section, we expand Example 1.

Example 2. Consider the transition system S of Example 1,
then:

• s0 ∈ ‖P‖ and s0 ∈ ‖♦P‖, but s1 6∈ ‖P‖ and s1 6∈ ‖♦P‖.
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• s1 ∈ ‖�P‖, but s0 6∈ ‖�P‖.

• For all modal formulas ϕ, s1 ∈ ‖�ϕ‖.

• For all modal formulas ϕ, s1 6∈ ‖♦ϕ‖.

2.2 µ-calculus

In this section, we define the µ-calculus and explain some of its basic prop-
erties. The µ-calculus is an extension of modal logic and was first defined by
Kozen in [14].

The modal µ-calculus is an extension of the (propositional) modal logic
by fixpoints. We assume (fixed) countable sets of propositions and variables.
We use P,Q,R, . . . as propositional symbols and X, Y, Z, . . . for variable
symbols. The formulas of µ-calculus are defined by the following grammar:

ϕ := P | ¬P | X | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ | µX.ϕ | νX.ϕ.

We can introduce negation on the µ-calculus by defining it to follow the usual
rules on connectives and modalities of modal logic and follow

¬µX.ϕ = νX.¬ϕ[X 7→ ¬X].

We call these formulas µ-formulas. We can suppose there is no repetition
between the bounded variables in a formula, as we can always exchange the
variables by new ones. For example νX.(X ∨ µX.(P ∧X)) can be rewritten
as νY.(Y ∨ µX.(P ∧X)). Let ϕ be a µ-formula, then we say the µ-operator
in µX.ϕ binds X in ϕ and that every instance of X is bound in µX.ϕ. If
X is bound by a µ-operator, we call X a µ-variable, and if X is bound by a
ν-operator, we call X a ν-variable. If a instace of X in ϕ is not bound, we
say it is free. If a formula ϕ has no free variables, we say it is closed.

We also consider a transfinite extension of the µ-calculus by adding the
rule that if ϕn is a recursive enumeration of µ-formulas, then

∨
n∈ω ϕn is also

a µ-formula. In this thesis, we only use
∨

to mean recursive conjunction, as
arbitrary disjunction does not make sense in our context, as it would allow
for arbitrary sets to be definable via transfinite µ-formulas. The reason for
this will be clear after we give the semantics of the µ-calculus.

Before defining semantics for the µ-calculus, we discuss the intended
meaning for µ and ν. µ is used to indicate “liveliness properties” and ν
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is used to indicate “safety properties”. For example µX.♦X ∨ P is intended
to mean “eventually P holds” and νX.�X∧P is intended to mean “P always
holds”.

We now discuss the semantics for the µ-calculus. We follow [20]. We
consider truth over a labeled transition system S = (S,E, ρ) where S is the
set of states, E ⊆ S × S are the transitions and ρ : Prop→ P(S) assigns to
each proposition P the states in which P is valid.

As the µ-calculus is an extension of the modal logic, we give ¬,∧ and �
their usual meanings. If ϕ(X) is a µ-formula with X as a free variable and S
is a transition system, given the modal logic semantics, we have that ‖ϕ(U)‖
is a subset of S for each U ⊆ S. The formula µX.ϕ(X) indicates the least
fixed point of the function Γ : P(S) → P(S) defined by Γ(U) = ‖ϕ(U)‖S.
Note that as Γ is monotone, such a least fixed point exists. For

∨
we just

take its meaning as union, just like ∧.
We define formally the semantics of the µ-calculus as follows:

Definition 2 (Extentional Semantics). Given a transition system S and a
valuation V : V ar → P(S), we define

‖P‖SV = ρ(P )

‖X‖SV = V (X)

‖¬ϕ‖SV = S \ ‖ϕ‖SV
‖ϕ ∧ ψ‖SV = ‖ϕ‖SV ∩ ‖ψ‖SV
‖�ϕ‖SV = {s|∀t ∈ S.〈s, t〉 ∈ E =⇒ t ∈ ‖ϕ‖SV }

‖µX.ϕ‖SV =
⋂
{U ⊆ S|‖ϕ‖SV [X→U ] ⊆ U}

‖
∨
n∈ω

ϕn‖SV =
⋃
n∈ω

‖ϕn‖SV

in the above definition, V [Z → U ](X) = U if X = Z and V [Z → U ](X) =
V (X) otherwise. We also define ‖ϕ ∨ ψ‖SV , ‖♦ϕ‖SV and ‖νX.ϕ‖SV using the
already defined relations. If the context permits, we omit S and V in the
notation above.

We also define another semantic for the µ-calculus. Given a µ-formula
ϕ, a transition system S and a valuation V , we define a game to decide if
s ∈ S satisfies ϕ. We denote this game by GSV (s, ϕ). It has two players,
V (erifier) and R(efuter). As their name says V wants to show that s satisfies
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ϕ and R wants to show that s does not satisfy ϕ. The game is played over a
directed graph where each vertex is owned by one of the players, who decides
the next vertice to be visited. The game vertices are pairs composed of a
subformula of ϕ and a state s ∈ S. We give the ownership of each the game
states according to the subformula in it. For example, if the game vertice
is 〈ψ1 ∧ ψ2, s〉, the R chooses either 〈ψ1, s〉 or 〈ψ2, s〉 and he tries to choose
one which is going to be false. If the game vertice is 〈♦ψ, s〉, V tries to
choose a state t accessible from s such that 〈ψ, t〉 is valid. Furthermore, if
a play is infinite, R wants to play so that, among the variables which were
passed through infinitely many times, the outermost variable is a µ-variable.
Formally, we have:

Definition 3 (Game Semantics). Given a transition system S, a state s0 ∈ S,
a valuation V : V ar → P(S) and a µ-calculus formula ϕ we define the game
GSV (s0, ϕ): The game vertices are the pairs 〈s, ψ〉 where s ∈ S and ψ is a
subformula of ϕ. The initial state is 〈s0, ϕ〉.

For the game edges we have:

• If ψ0 ∧ ψ1 is a subformula of ϕ then 〈s, ψ0 ∧ ψ1〉 → 〈s, ψ0〉 and 〈s, ψ0 ∧
ψ1〉 → 〈s, ψ1〉 are edges.

• If �ψ is a subformula of ϕ and 〈s, t〉 ∈ E, then 〈s,�ψ〉 → 〈t, ψ〉 is an
edge. The same holds if we substitute � by ♦.

• If µX.ψ is a subformula of ϕ then 〈s, µX.ψ〉 → 〈s, ψ〉 and 〈s,X〉 →
〈s, µX.ψ〉 are edges. Again, we do it similarly for νX.ψ

Furthermore we define the ownership of the vertices in the following way:
V owns 〈s, ψ0 ∨ ψ1〉, 〈s,♦ψ〉, 〈s, P 〉 if s 6∈ ρ(P ) and 〈s, Z〉 if s 6∈ V (Z). R
owns 〈s, ψ0 ∧ ψ1〉, 〈s,�ψ〉, 〈s, P 〉 if s ∈ ρ(P ) and 〈s, Z〉 if s ∈ V (Z). The
ownership of the other vertices does not matter.

If a play is finite and ends in a vertex 〈s, ψ〉 then V wins if

• ψ = P and s ∈ ρ(P ), or

• ψ = Z and Z is free in ϕ and s ∈ V (Z), or

• ψ = �θ and there is no state t ∈ S such that 〈s, t〉 ∈ E.

and R wins if
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• ψ = P and s 6∈ ρ(P ), or

• ψ = Z and Z is free in ϕ and s 6∈ V (Z), or

• ψ = ♦θ and there is no state t ∈ S such that 〈s, t〉 ∈ E.

If V wins we state s0 |=S
V ϕ. If the play is infinite, then

• V wins if the unique fixed point variable X which occurs infinitely often
and subsumes all other variables occuring infinitely often, is bound by
a ν-operator.

• R wins if the unique fixed point variable X which occurs infinitely often
and subsumes all other variables occuring infinitely often, is bound by
a µ-operator.

We can use either of these semantic notions as they are equivalent via:

Theorem 1. s ∈ ‖ϕ‖SV iff V has a winning strategy for GSV (s, ϕ).

We say that a formula ϕ is satisfiable iff there is a transition system S, a
state s ∈ S and a valuation V such that s ∈ ‖ϕ‖SV .

Before proceeding to show the basic properties of the µ-calculus we present
a few examples.

Example 3. Let ϕ = µX.P ∨ ♦X. Intuitively, this means “eventually P
holds”. Consider the following transition system S1:

s0

¬P

s1

P

s2

¬P

Here, s0 |= ϕ, s1 |= ϕ, and s2 6|= ϕ.

Example 4. Let ψ = νX.♦P ∧ �X. Intuitively, this means “♦P always
holds”. Consider the following transition system S2:

s0

¬P

s1

P

Here, s0 6|= ψ and s1 6|= ψ.
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s0, µX.P ∨ ♦X

s0, P ∨ ♦X

s0, P s0, ♦X

s1, X

s1, P ∨ ♦X

s1, P s1, ♦X

s2, X

...

Figure 2.1: The game for s0 |=S1 ϕ. Vertices owned by V are blue and
vertices owned by R are red.

s0, νX.♦P ∧�X

s0, ♦P ∧�X

s0, ♦P

s0, P s1, P

s0, �X

s1, X

s1, ♦P ∧�X

s1, ♦P s1, �X

s0, X

s0, ♦P ∧�X

s0, ♦P

s1, P

s0, �X

...

Figure 2.2: The game for s0 6|=S2 ψ. Vertices owned by V are blue and
vertices owned by R are red.
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We sketch the games for s0 |=S1 ϕ and s0 |=S2 ψ on Figures 2.1 and 2.2,
respectively.

By alternating µ and ν operators we can define more complex formulas.
We can show that there are some formulas that actually need the alternation
of operators to be defined. Let us now explain how to make this idea precise.

We start by defining how we count the operator alternations:

Definition 4 ((Emerson-Lei) Alternation Hierarchy). Let α < ωck1 , then:

• Σµ
0 ,Π

µ
0 : the class of formulas with no fixpoint operators

• Σµ
α+1 : the class of formulas containing Σµ

α ∪ Πµ
α and closed under the

operations ∨,∧,�,♦, µX and the substitution: For a ϕ(X) ∈ Σµ
α+1 and

a closed ψ ∈ Σµ
α+1, ϕ(X\ψ) ∈ Σµ

α+1.

• Πµ
α+1 : the class of formulas containing Σµ

α ∪ Πµ
α and closed under the

operations ∨,∧,�,♦, νX and the substitution: For a ϕ(X) ∈ Πµ
α+1 and

a closed ψ ∈ Πµ
α+1, ϕ(X\ψ) ∈ Πµ

α+1.

• Σµ
λ : the class of formulas containing

⋃
α<λ Σµ

α and closed under
∨
i<ω ϕi

where ϕi are recursively many formulas.

• Πµ
λ : the class of formulas containing

⋃
α<λ Πµ

α and closed under
∧
i<ω ϕi

where ϕi are recursively many formulas.

• ∆µ
α := Σµ

α

⋂
Πµ
α

We can get other hierarchies by modifying the above definition: by om-
mitting the substitution rule we get the simple alternation hierarchy ΣSµ

α ;
and by changing the substition rule to require just that no free variable of ψ
becomes a bound variable in ϕ(X\ψ) we get the Niwińsky hierarchy ΣNµ

α . If
we do not specify which of these hierarchies we are refering to, it means that
the result holds for all of them. It is immediate from our definitions that:

Proposition 2. For all α < ωck1 , ΣSµ
α ( Σµ

α ( ΣNµ
α .

Here, ωck1 denotes the least non-computable ordinal.
As the hierarchies defined above are related only to the syntax of the

µ-calculus we also define a semantic alternation hierarchy. Again we denote
it by Σµ

α as this will not cause any confusion.
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Definition 5 (Semantic Alternation Hierarchy). For all α < ωck1 , we define

Σµ
α = {‖ϕ‖S| ϕ ∈ Σµ

α is a sentence and S is a transition system}.

We have by [3] that

Theorem 3. The semantic alternation hierarchy of the µ-calculus is strict.

If we restrict the considered transition systems, the above theorem may
hold or not. We say that a transition system (S,E, ρ) is finite iff S is a finite
set. In the case of finite transition systems, Theorem 3 holds because:

Proposition 4. If ϕ is a formula of the µ-calculus and is satisfiable, then ϕ
is satisfiable by a finite model.

We also consider recursively presentable transition systems (for short,
r.p.t.s), i.e., transitions systems of the form (S,E, ρ) which each of S and E
can be recursively coded as sets of integers and ρ is recursive. For simplicity,
we consider S to be a recursive set of natural numbers. In this case, Theorem
3 also holds.

Figure 2.3 summarizes the results of this section:

Σµ
1

Σµ
2

Σµ
3

Σµ
n

Πµ
1

Πµ
2

Πµ
3

Πµ
n

...

...

Figure 2.3: The altenation hierarchy of the µ-calculus.

Note that we have choosen to use only one modality in our µ-calculus.
When applying the µ-calculus it is often useful to consider more modalities.
All the results in this section also hold in this case.
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2.3 µ-arithmetic

In this section we define an arithmetical variation of the µ-calculus. It is
obtained by adding the fixed point operators µ and ν to the first-order
arithmetic. In this context, µxX.ϕ is the least fixed point of the opera-
tor Γ : P(ω)→ P(ω) defined by Γ(X) = {x ∈ ω|ϕ(x,X)}, and νxX.ϕ is the
greatest fixed point of this same operator. Note that µ and ν are dual by
¬µxX.ϕ(X) = νxX.¬ϕ(¬X).

Example 5. The following formula defines the even numbers in the µ-
calculus:

µxX.(x = 0 ∨ (x− 2) ∈ X)

Calculating the least fixed point of Γx=0∨(x−2)∈X we have:

∅ 7→ {0} 7→ {0, 2} 7→ {0, 2, 4} 7→ · · · 7→ {0, 2, 4, 6, 8, · · · }

By negation, we get that the odd numbers are defined by:

νxX.(x 6= 0 ∧ (x− 2) ∈ X)

Again, alculating the greatest fixed point of Γx6=0∧(x−2)∈X we have:

ω 7→ ω \ {0} 7→ ω \ {0, 2} 7→ ω \ {0, 2, 4} 7→ · · · 7→ {1, 3, 5, 7, 9 . . . }

Before defining the µ-arithmetic we consider a concept we could evade
with our definition of µ-calculus. Via the De Morgan dualities, we can push
the negation symbols ¬ inwards so that it applies only to atomic formulas.
We say ϕ is X-positive if all of the occurrences of X after applying this
procedure are of the form τ ∈ X, i.e., we only check positive ocurrences of
terms in X. This is necessary to guarantee that the operator Γ is monotone,
and so has least and greatest fixed points.

We define the µ-arithmetic and its alternation hierarchy simultaneously:

Definition 6. For each α < ωck1 :

• Σµ
0 is the set of all set variables and formulas without fixpoint operators.

• Σµ
α+1 is generated from Σµ

α∪Πµ
α by closing it under ∨, ∧, ∈ and µxX.ϕ

for X-positive ϕ ∈ Σµ
α+1. Here µxX.ϕ is called a Σµ

α+1 term.

• Πµ
α+1 contains all the negations of fomulas and set terms in Σµ

α+1.
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• If λ is a limit ordinal, then Σµ
λ is generated from

⋃
α<λ Σµ

α and closed
under

∨
i<ω.

• Πµ
λ contains all the negations of Σµ

λ formulas and terms.

Note that when using the µ-operator we bind a number variable x and
a set variable X. As in the µ-calculus, we say that the occurences of x or
X in µxX.ϕ are bound, and if x or X is not bound they are free. If a
formula has no free set variable we say it is closed. Note that, in the case
of µ-arithmetic, µxX.ϕ denotes not a formula but a set term, and when
constructing formulas with set terms they are syntactically the same as set
variables. As N is the only intended model for µ-arithmetic, we do not need
to define a semantic alternation hierarchy. We say a µ-formula is Σµ

α-definable
iff it is equivalent to a Σµ

α-formula. And we say a µ-term is Σµ
α-definable iff

it is equal to some Σµ
α µ-term. If ϕ ∈ Σµ

0 , we say it is arithmetical. Also
note that we could possibly define Emerson-Lei and Niwińsky versions for
the µ-arithmetic alternation hierarchy, but in this case all three hierarchies
are equal, for details see section 4 of [3]. We can also check the validity
of formulas of the µ-arithmetic by games, although we omit the definition
of these games here they follow the same idea as games for the µ-calculus.
We call these games model checking games. We also call the formulas of
µ-arithmetic by µ-formulas, the intended meaning will be clear in context. If
necessary we say that a formula of µ-calculus is a modal µ-formula and that
a formula of µ-arithmetic is an arithmetic µ-formula.

We justify the increasing overload of meanings for the symbol Σµ
α by the

following transfer theorems:

Theorem 5. Let ϕ(z) be a Σµ
n formula of µ-arithmetic. There is an r.p.t.s.

T , a valuation V and a Σµ
n modal µ-formula ϕ such that ϕ(s) iff s ∈ ‖ϕ‖TV .

Theorem 6. For each modal µ-calculus formula ϕ ∈ Σµ
n and for each recur-

sively presentable transition system T , ‖ϕ‖T is Σµ
n-definable set of integers.

In Theorem 6, recall that we consider the set of states of an r.p.t.s to be
a recursive set of integers, so ‖ϕ‖T is a set of integers.

We have by [3] that

Theorem 7 (Bradfield). The alternation hierarchy of the µ-arithmetic is
strict.
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This result is obtained by codifying the satisfiability of the µ-formulas in-
side µ-arithmetic. This proof uses the same idea as the proof for the strictness
of the Arithmetic Hierarchy for PA, for more information see [2, 12]. Even
though Bradfield’s result says only about the finite levels of the alternation
hierarchy, it can be extended to the full µ-arithmetic alternation hierarchy
using the method described here. It can also be obtained as a corollary of
Theorem 15.

An essential point in Bradfield’s proof is the existence of a normal form
for µ-formulas in the finite levels of the alternation hierarchy, a result first
obtained by Lubarsky in [16]. This result will be useful for us in Chapter 3.

Theorem 8 (Lubarsky). Any Σµ
n-formula can be put in the form

τn ∈ µxnXn.τn−1 ∈ νxn−1Xn−1.τn−2 ∈ µxn−2Xn−2.. . . . τ1 ∈ ηx1X1.ϕ

where ϕ is a µ-formula without set quantifiers and µ and ν operators and each
τi is a (number) term. That is, for any Σµ

n-formula there is an equivalent
formula that is generated by taking an arithmetical formula and alternating
µ and ν operators.

2.4 Gale-Steward Games

In this section we introduce Gale-Steward games in the Baire space. We
also present some basic results about determinacy. In this section we use
some basic definitions of descriptive set theory. As general references for
descriptive set theory and Gale-Steward games, see [9, 19].

The Baire space is the space ωω of all infinite sequences of natural numbers
with the product topology. Let s be a finite sequence of natural numbers of
length n. The open interval [s] is the set {x ∈ ωω|x � n = s}. The open
intervals form an open basis of the topology of ωω.

Definition 7. A game on the Baire space is defined as follows: Two players
(I and II) alternate playing elements from ω to form a sequence in ωω. This
sequence is called a run. I wins a run x of the game iff x ∈ A where A is a
fixed subset of ωω. Otherwise II wins. A is called the payoff of the game.
We denote this game by GA. A strategy for I is a function from the finite
sequences of ω with even length into ω. I plays a run x with strategy σ iff
for all n ∈ ω x(n) = σ(x � n). If σ is a strategy for I and z ∈ Xω, the run
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where I plays according to σ and II plays z is denoted σ(z). A strategy for
I is winning iff for all z ∈ Xω σ(z) ∈ A. We define the notions of strategy for
II similarly. A game is determined iff either I or II has a winning strategy.

In case the payoff set A is open, Σ0
2, Borel, etc., we say the game GA is

open, Σ0
2, Borel, etc.

Having defined games on ωω, we can state:

Definition 8 (AD). The Axiom of Determinacy states that for every A ⊂ ωω

the game GA is determined.

Theorem 9. ZF + AD + AC `⊥,

By the above theorem, we can not assume AD unless we abstain from
supposing Choice. But assuming choice we still have:

Theorem 10 (Martin). ZFC ` all Borel games are determined.

All the games used in the semantics for the µ-calculus and µ-arithmetic
have Borel payoff, we work inside ZFC.

As a historical sidepoint we state two subcases of Borel Determinacy. We
will reference the proofs of these theorems in Chapters 3 and 4.

Theorem 11 (Gale-Steward). ZFC ` all open games are determined.

Theorem 12 (Wolfe). ZFC ` all Σ0
2 games are determined.

We make one more definition before going to the next topic:

Definition 9. We define the quantifier a by

aα.P (α, ~x) = {~x| I wins the Gale-Steward game with payoff P (α, ~x)} ⊆ ωk.

where P ⊆ ωω × ωk for some k ∈ ω.

If Γ is a pointclass, define aΓ = {S|S = aα.P (α, ~x) where P ∈ Γ}. For
context, the following holds:

Theorem 13 (Kechris,Moschovakis). aΣ0
1 = Π1

1.

Theorem 14 (Solovay). aΣ0
2 = Σ1

1-IND. Here, Σ1
1-IND is the class of sets

given via an inductive definition over a Σ1
1 predicate.
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2.5 The Difference Hierarchy

In this section we the difference hierarchy of Σ0
2 and its connection to the

µ-arithmetic. This result is from [5–7].
Recall that the difference hierarchy for Σ0

2 is defined as follows:

Definition 10. For each α < ωck1 ,

S ∈ Σδ
α ⇐⇒ S =

⋃
β∈Opp(α)

(Aβ − ∪ζ<βAζ)

where (Aβ)β<α is an effective enumeration of a sequence of sets in Σ0
2 and

Opp(α) is the set of ordinals less that α whose parity is opposite to the parity
of α. (We consider the limit ordinals to be even.)

Note that if we substitute Σ0
2 by other pointclasses we can get other

alternation hierarchies.
For the finite levels of the difference hierarchy we can consider the follow-

ing alternative definition:

Definition 11. Let n ∈ ω, then:

• Σδ
0 = Σ0

1,

• Πδ
n = ¬Σδ

n, and

• Σδ
n+1 = Σ0

2 ∧ Πδ
n.

Now we can state the main theorem from [5–7] which connects the differ-
ence hierarchy to the alternation hierarchy of the µ-arithmetic:

Theorem 15 (Bradfield, Duparc, Quickert). For all α < ωck1 , aΣδ
α = Σµ

α+1.

From [17], we have:

Theorem 16 (MedSalem, Tanaka).
⋃
α<ωck

1
Σδ
α = ∆0

3

By combining the two theorems above and noting that ∪i<ω commutes
with a, we have:

Corollary 17.
⋃
α<ωck

1
Σµ
α = a∆0

3.
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2.6 Reverse Mathematics

In this section, we shortly explain Reverse Mathematics and present the ba-
sic results relating to determinacy. Reverse Mathematics aims to answer the
question of what axioms are necessary for theorems of “ordinary” mathemat-
ics. For a throughout introduction see [21].

We work here with the second order arithmetic Z2, which is a theory in a
two-sort first-order logic describing the natural numbers and sets of natural
numbers. We call its language L2. It is a quite strong theory, and we are
able to show many theorems of ordinary mathematics inside it. Indeed, it
is too strong for our objectives, so we consider some subsystems of Z2. The
five main subsystems of Z2 are:

• RCA0 states the basic axioms for the ordering of the natural numbers,
natural addition and multiplication, plus induction for Σ0

1 formulas and
comprehension for ∆0

1 formulas.

• WKL0 is RCA0 plus the statement that every infinite binary tree has
an infinite path.

• ACA0 is RCA0 plus comprehension for all arithmetic formulas.

• ATR0 is ACA0 plus axioms for “roughly” transfinite induction on arith-
metic formulas.

• Π1
1-CA0 is ACA0 plus comprehension for Π1

1 formulas.

The systems above are in order of strictly increasing strength. We work over
some base system (usually RCA0 or ACA0) and show that some other system
and some theorem are equivalent over the base system. Many of the theorems
of ordinary mathematics are equivalent to some of the five systems above,
and also systems stronger than RCA0 but weaker that Π1

1-CA0. There are
not many examples of theorem of ordinary mathematics above Π1

1-CA0.
We present a few results related to determinacy in Reverse Mathematics

in the following theorem. For more details, see [23].

Theorem 18. The following statements hold:

• (Steel) ACA0 ` ATR0 ↔ ∆0
1 determinacy ↔ Σ0

1 determinacy.

• (Tanaka) ATR0 ` Π1
1-CA0 ↔ Π0

1 ∧ Σ0
1 determinacy.
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• (Montalbán-Shore) Π1
n+2CA0 ` n-Σ0

3 determinacy.

• (Montalbán-Shore) ∆1
n+2CA0 6` n-Σ0

3 determinacy.

• (Montalbán-Shore) Z2 6` (Σ0
3)<ω determinacy.

Here n-Σ0
3 denotes the n-th level of the difference hierarchy for Σ0

3, and (Σ0
2)<ω

denotes the union
⋃
n∈ω n-Σ0

3.
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Chapter 3

The weak µ-arithmetic

3.1 The weak µ-arithmetic and the weak µ-

calculus

In this section we present a weak version of the µ-arithmetic and the µ-
calculus and some of its basic properties. This weak version is obtained by
restricting the way we can alternate the µ and ν operators. This definition
comes from Li’s thesis [15].

Definition 12. We define the weak alternation hierarchy for the µ-arithmetic
as follows:

• ΣWµ
0 is the set of all the first order formulas and all set variables.

• ΣWµ
α+1 is generated from ΣWµ

α ∪ ΠWµ
α by closing it under ∨, ∧ and the

following substitution rules: (a) If ϕ(X) is Σµ
1 and if ψ is a ΣWµ

α+1 term

without free set variables, then ϕ(X\ψ) is also ΣWµ
α+1; (b) if ϕ is a

Σµ
1 , ϕ′ is a subformula of ϕ and ψ is a ΣWµ

α+1 term without free set

variables,then ϕ(ϕ′\ψ) is also ΣWµ
α+1. In these substitution rules, ϕ can

be either a formula or a term.

• If λ is a limit ordinal, then ΣWµ
λ is generated from

⋃
α<λ ΣWµ

α and closed
under

∨
i<ω.

• ΠWµ
α contains all the negations of fomulas and set terms in ΣWµ

α .

• ΠWµ
λ contains all the negations of ΣWµ

λ formulas and terms.
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Observe that we abuse the notation of substitution in this definition. This is
necessary in the transfinite levels of the weak hierarchy, as there are no weak
µ-term strictly in the limit levels.

Definition 13. We define the weak alternation hierarchy for the µ-calculus
as follows:

• ΣWµ
0 ,ΠWµ

0 : the class of formulas with no fixpoint operators

• ΣWµ
α+1 : the class of formulas containing ΣWµ

α ∪ ΠWµ
α and closed under

the operations ∨,∧,�,♦ and the substitution: For a ϕ(X) ∈ Σµ
1 and a

closed ψ ∈ ΣWµ
α+1, ϕ(X\ψ) ∈ ΣWµ

α+1.

• Dually for Πµ
α+1

• If λ is a limit ordinal, then ΣWµ
λ is generated from

⋃
α<λ ΣWµ

α and closed
under

∨
i<ω.

• Dually for Πµ
λ

• ∆Wµ
α := ΣWµ

α

⋂
ΠWµ
α

These alternations are weak in the sense that we are restricting the inter-
action between the µ and ν operators. Indeed, the weak definable sets are
relatively low on the full alternation hierarchy. For the first ω levels it is easy
to check that:

Proposition 19. For all n ∈ ω, ΣWµ
n ( ∆µ

2 .

For the µ-calculus this only holds for the Emerson-Lei and Niwińsky
alternation hierarchies, and the proof is simple. For the µ-arithmetic, we
note that the simple and Niwińsky hierarchies coincide, as we said in Section
2.3. This does hold for the transfinite levels, but this is not so easy because
of the recursive disjunction and conjunction and we need to look at the
semantics side of the problem.

In the previous chapter we presented Theorems 5 and 6. There are trans-
fer results between the µ-arithmetic and the µ-calculus. These transfer results
also hold in the weak context:

Theorem 20. Let ϕ(z) be a ΣWµ
α formula of µ-arithmetic. There is a r.p.t.s.

T , a valuation V and a ΣWµ
α modal µ-formula ϕ such that ϕ(s) iff s ∈ ‖ϕ‖TV .
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Theorem 21. For each modal µ-calculus formula ϕ ∈ ΣWµ
α and for each

recursively presentable transition system T , ‖ϕ‖T ⊆ ω is ΣWµ
α -definable set

of integers.

Proof. Observe that, if we start with weak formulas, the new formulas defined
in Bradfield’s proof are also weak. Therefore these theorems follow from the
proof of the full case.

In this chapter, we consider only the semantic alternation hierarchy for
the weak µ-calculus restricted to recursively presented transition systems:

Definition 14. For all α < ωck1 , define

ΣWµ
α = {‖ϕ‖T ⊆ ω|ϕ ∈ ΣWµ

α and T is an r.p.t.s}

In the following result, we denote by ΣWµ
α,A the sets of integers definable

by ΣWµ
α -formulas of µ-arithmetic and by ΣWµ

α,C the levels of the semantic
alternation hierarchy for the µ-calculus. By theorems 20 and 21, we have:

Corollary 22. For all α < ωck1 , ΣWµ
α,A = ΣWµ

α,C.

That is, it does not matter if we work on the µ-arithmetic or the µ-calculus
if we are interested in the alternation hierarchy.

By adapting Bradfield’s proof in [2], we can get the strictness of the finite
levels of the weak alternation hierarchies:

Theorem 23. The weak alternation hierarchies for the µ-calculus and the
µ-arithmetic are strict below ω.

Proof. We can adapt the proof for the full µ-arithmetic that is in [2]. This is
a generalization of proof of the strictness of the arithmetic hierarchy in PA
using satisfaction formulas. We omit this proof as it is rather complicated but
not conceptually hard. For the µ-calculus we use the result for µ-arithmetic
and Theorems 20 and 21.

We conjecture that this proof can be extended to the transfinite levels.
The following normal form for the weak µ-arithmetic is going to be useful

in the next section:

Theorem 24. Every weak µ-formula and µ-term can be put in a normal
form:
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• If ϕ ∈ ΣWµ
1 is a term, then ϕ ≡ µX1.ψ where ψ is an arithmetical

formula.

• If ϕ ∈ ΣWµ
α+1 is a term, then ϕ ≡ µXα+1.ψ(ψ1, . . . , ψn) where ψ is an

arithmetical formula and ψ1, . . . , ψn are ΠWµ
α terms in normal form.

• If α is not a limit ordinal and ϕ ∈ ΣWµ
α is a formula, then ϕ ≡ τα ∈ ϕ′

where ϕ ∈ ΣWµ
α is a term in normal form.

• If λ is a limit ordinal and ϕ ∈ ΣWµ
λ is a formula, then ϕ ≡

∨
n∈ω ψn

where each ψn is a formula in
⋃
α<λ ΣWµ

α . We furthemore suppose that
Xβ is a µ-variable iff α and β have the same parity.

Note that if λ is a limit ordinal, then there are no µ-terms in ΣWµ
λ \

⋃
α<λ ΣWµ

α .

Proof. Use Lubarsky’s Normal Form Theorem for µ-formulas and observe
that using the available arithmetical machinery we can do all the substitu-
tions at the same time. We can resolve the parity condition on the limit case
by padding the terms with µ and ν operators.

3.2 µ-arithmetic and the difference hierarchy

In this section, we prove the weak version of Theorem 15. Here Σδ,1
α denotes

α-th level of the difference hierarchy for Σ0
1 sets of finite sequences of integers.

Theorem 25. ΣWµ
α+1 = aΣδ,1

α , for all α < ωck1 .

Proof. For clearness, we divide this proof into two claims. Both of them are
proofs by induction.

Claim 1. aΣδ1

α ⊆ ΣWµ
α+1, for all α < ωck1 .

Proof. We prove this based on Gale and Steward’s proof of Open Determi-
nacy. This proof was inspired by [5–7].

Before formalizing the proof we sketch its idea. The proof of Open De-
terminacy proceeds by defining the winning position of the game

∃n.Q(α[n], ~x)
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where Q is a recursive set and ~x are natural number parameters. We omit
the parameters most of the time. We start defining the winning positions
with the “easy” positions:

s ∈ W0 iff Q(s)

If we have defined Wα, we define Wα+1 by adding to Wα all the positions
where I can immediately force the play into Wα, i.e.,

s ∈ Wα+1 iff s ∈ Wα

∨ lh(s) is odd and ∀n.sa n ∈ Wα

∨ lh(s) is even and ∃m∀n.sama n ∈ Wα

For a limit ordinal λ, we define Wλ =
⋃
α<λWα.

We can extend this proof to the difference hierarchy for Σ0
1 by adding a

Πδ,1
α parameter to the open game. This results in the game

∃n.Q(α[n]) ∧R(α).

If we denote the winning region of R by WR we define the winning region of
the new game by:

s ∈ W0 iff Q(s) ∧ s ∈ WR

s ∈ Wα+1 iff s ∈ Wα

∨ lh(s) is odd and ∀n.sa n ∈ Wα ∩WR

∨ lh(s) is even and ∃m∀n.sama n ∈ Wα ∩WR

We can then show that

• There is a winning strategy for I iff 〈〉 ∈ W .

• There is a winning strategy for II iff 〈〉 6∈ W .

We now formalize the argument above in the µ-arithmetic by defining the
winning region inside it.
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• Let α = 0. We show that aΣδ,1
0 ⊆ ΣWµ

1 . Consider the open game
P (α, ~x) = ∃n.Q(α(n)). We define its winning positions by:

WP = µyY.(Q(y)

∨ (lh(y) is odd and ∀n.sa n ∈ Y )

∨ (lh(y) is even and ∃m∀n.sama n ∈ Y ))

We have then that ~x ∈ aα.P (α, ~x) iff 〈〉 ∈ W (~x).

• We show that aΣδ,1
α+1 ⊆ ΣWµ

α+2. Consider the game P (α, ~x) = ∃n.Q(α(n))∧
R(α), where Q is recursive and R is Πδ,1

α . We define its winning posi-
tions by:

WP = µyY.((Q(y) ∧WR(y))

∨ (lh(y) is odd and ∀n.y a n ∈ Y )

∨ (lh(y) is even and ∃m∀n.y ama n ∈ Y ))

We have then that ~x ∈ aα.P (α, ~x) iff 〈〉 ∈ W (~x) again.

• Let λ be a limit ordinal and suppose aΣδ,1
α ⊆ ΣWµ

α+1 holds for all α < λ.

Let P (α, ~x) =
∨
i<ω ϕn be a Σδ,1

λ game, with each ϕi in
⋃
α<λ Σδ,1

λ . Then

W = µyY.(
∨
n<ω

Wϕn(y))

lh(y) is odd and ∀n.sa n ∈ Y

lh(y) is even and ∃n∀n.sama n ∈ Y )

Yet another time, ~x ∈ aα.P (α, ~x) iff 〈〉 ∈ W (~x).

We can then conclude that aΣδ,1
α ⊆ ΣWµ

α+1 for all α < ωck1 .

Claim 2. ΣWµ
α+1 ⊆ aΣδ,1

α , for all α < ωck1 .

Proof. This proof is based on the proof for Claim 2 of [7]. Let ϕ(~x) denote
a ΣWµ

α+1 term in normal form (check Theorem 24). The key fact is that the

model checking game for a ΣWµ
α+1-formula is essentially the code of a Σδ,1

α set.
In case of α = 0, if I wins the model checking game G for n ∈ ϕ(~x) he wins
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in finite time, so G is an open game. For the other cases we use a more
sofisticated argument which holds for the successor and limit cases.

Suppose there is some n ∈ ϕ. Consider the model checking game for n ∈
ϕ. We can consider this game to be a subtree of ω∗ by coding. Furthermore,
we can suppose that this tree has no finite maximal branches. To simplify
the tree, we suppose each node of the tree marks a loopback, i.e., that each
node is some n′ ∈ Xβ. We also ommit the n′s and keep track only of the βs,
so each vertice is just an ordinal number β. We denote the tree obtained by
this process by T .

For each successor β ∈ α, we define

Cβ = {x ∈ [T ]|∃n.x(n) = β}

Each Cβ is in Σ0
1. Let I = {β < α|parity(β) 6= parity(α)}. Define

C =
⋃
β∈I

Cβ \ (
⋃
ζ<β

Cζ)

C is a Σδ,1
α set. We show C is the payoff set for I.

Let x ∈ C and fix the β such that x ∈ Cβ \(
⋃
ζ<β Cζ). We have that the β

with parity not equal to the parity of α are all ν-variables, by the definition
of the normal form. Therefore x is a run that eventually loops the ν-variable
Xβ. That is, x is a winning run for I.

If x is a run that is winning for I, then it eventually inspects only some
ν-variable Xβ, so x ∈ Cβ \ (

⋃
ζ<β Cζ) and consequently x ∈ C.

This concludes the proof of Theorem 25.

The following is a result by Tanaka[22]:

Theorem 26 (Tanaka).
⋃
α<ωck

1
Σδ,1
α = ∆0

2.

As a consequence we have:

Corollary 27.
⋃
α<ωck

1
ΣWµ
α = a∆0

2.

By Theorem 15, we have that a∆0
2 = ∆µ

2 , so the following also holds:

Corollary 28.
⋃
α<ωck

1
ΣWµ
α = ∆µ

2 .

Figure 3.1 summarizes our results.

28



aΣδ,1
0 = ΣWµ

1

aΣδ,1
1 = ΣWµ

2

aΣδ,1
2 = ΣWµ

3

aΣδ,1
α = ΣWµ

α+1

ΠWµ
1

ΠWµ
2

ΠWµ
3

ΠWµ
α+1

a∆0
2 = ∆µ

2

...

...

Figure 3.1: The weak altenation hierarchy of the µ-arithmetic.

Open Question 1. Observe that the weak altenation hierarchy is a refine-
ment of the altenation hierarchy up to ∆µ

2 . Can we extend this idea to the
upper levels? For example, can we extend the weak altenation hierarchy to a
hierarchy ΣWµ

α (Σµ
2) such that⋃

α<ωck
1

ΣWµ
α (Σµ

2) = ∆µ
3

If we can do this, can we extend this further to all the ωck1 levels of the
alternation hierarchy?

Open Question 2. If we can solve the problem above, we would be able to
obtain a finer view of the Wadge Degrees involved in the alternation hierarchy
of µ-arithmetic.
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Chapter 4

µ-arithmetic and Second Order
Arithmetic

In this chapter we present the proof that the formalized version of the µ-
arithmetic inside L2 is equivalent to (Σ0

2)<ωdeterminacy over ACA0 and
present a refinement for this result. This is the main theorem of [18].

As the proof of Heinatsch and Möllerfeld’s theorem is quite long and
involved, we only explain it to the extent that we can obtain our result.
Before doing so, we explain the outline of this chapter. In Section 4.1, we
formalize the µ-arithmetic and present the theory aame for describing games
in second order arithmetic. These two theories are in fact equivalent over L2-
formulas. In Section 4.2, we present the proof of Heinatsch and Möllerfeld’s
theorem. We divide this proof into two parts. To prove (Σ0

2)<ωdeterminacy
from µ-arithmetic we adapt Wolfe’s proof of Σ0

2 determinacy. To embed
aame inside (Σ0

2)<ωdeterminacy we have to define some quite complex games,
here we present only the definitions relevant to the proof of our result. In
Section 4.3 we finally prove give the refinement of Heinatsch and Möllerfeld’s
theorem.

In this section, we use ω to denote the “real” natural numbers and N to
denote the natural numbers inside our axiom systems.

4.1 µ-arithmetic and Reverse Mathematics

In this section we formalize the µ-arithmetic inside Z2. These results are
from [18].
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We define the language Lµ of µ-arithmetic by adding the constructor µ to
L2. Define the set of Lµ-formulas and Lµ-terms to be the smallest set which
includes the L2-formulas and is closed under the usual rules for forming L2-
formulas and the following rule: if ϕ(x,X) is an X-positive formula of Lµ,
we add a set term µxX.ϕ(x,X), with the restriction that ϕ(x,X) has no
second order quantifiers.

The term µxX.ϕ(x,X) denotes the least fixed point of the operator
Γϕ(X) = {x|ϕ(x,X)}. To formalize this idea we define for each X-positive
formula ϕ(x,X) the following formula:

LFP (ϕ, I) ⇐⇒ ∀x.(x ∈ I ↔ ϕ(x, I)) ∧ ∀Y.(∀x.(ϕ(x, Y )→ x ∈ Y )→ I ⊂ Y

LFP stands for least fixed point and LFP (ϕ, I) means that I is a fixed point
of Γϕ(X) and is the least such fixed point.

Definition 15. The µ-arithmetic is the system contains the axioms of ACA0

(including comprehension for Lµ-formulas with no set quantifiers) and con-
tains LFP (ϕ(x,X), µxX.ϕ(x,X)) for each X-positive formula ϕ ∈ Lµ with
no set quantifiers. Note that we do not consider µ a set quantifier, so we can
take fixed points of formulas which include µ.

We also define

IGF (ϕ, S,�,≺) ⇐⇒ (S,�,≺) is a prewell-ordering and

∀x, y(x � y ↔ x ≺ y ∨ ϕ(x, {z|z ≺ y})).

Moreover, over ACA0, if ϕ(x,X) is an X-positive formula, S is a set and
≺,� are binary relations on S, then IGF (ϕ, S,�,≺) implies LFP (ϕ, S).

A generalized quantifier Q is a subset of P(N) such that

∅ 6∈ Q

Q 6= ∅
X ⊂ Y ∧X ∈ Q⇒ Y ∈ Q.

We abbreviate {x|ϕ(x)} ∈ Q by Qx.ϕ(x). We define the inverse quantifier
Q by Q = {¬X|X 6∈ Q}. We have that ∀ = {ω}, ∃ = P(ω) \ {∅}, ∀ = ∃ and
∃ = ∀.

The next quantifier or open game quantifier Q∨ is defined by

Q∨x.ϕ(x) ⇐⇒ (Qx0)(Qx1)(Qx2)(Qx3) · · ·
∨
n∈ω

ϕ(〈x0, . . . , xn〉)
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In this thesis we only use the following generalized quantifiers:

∃0 = ∃;∀n = ∃n;∃n+1 = (∃n)∨

These quantifiers are not definable in L2, but we define an adequate
extention to L2 in which all the quantifiers ∃n and ∀n are definable. We
define La by adding the quantifier symbols ∃n and ∀n for all n ∈ ω. The
La-formulas are defined the same way L2-formulas are defined, with the
additional rule that ∃nx.ϕ(x) and ∀nx.ϕ(x) are valid formulas if and only if
ϕ has no second-order quantifiers (even if ∃n and ∀n occur in ϕ).

Definition 16. The theory aame (with language La) consists of the following
axioms:

• the axioms of ACA0, with comprehension for all La-formulas without
second-order quantifiers.

• ∃0x.ϕ(x)↔ ∃x.ϕ(x)

• ∃n+1x.ϕ(x, ~y, ~Y )↔ ∀X(∀x.(ϕ∃n(x, ~y,X, ~Y )→ x ∈ X)→ 〈〉 ∈ X)

• ∀nx.ϕ(x)↔ ¬∃nx.¬ϕ(x)

where ϕ varies over formulas without second-order quantifiers.

Above we have that ϕQ is an abbreviation for

Qx.sa 〈x〉 6∈ X → ϕ(s, ~y, ~Y )

As ϕQ is X-positive, ∀X(∀x.(ϕ∃n(x, ~y,X, ~Y )→ x ∈ X)→ 〈〉 ∈ X) expresses
that 〈〉 is in the least fixed point operator defined by ϕ∃

n
(x,X).

We have from [18] that

Theorem 29. The µ-arithmetic and aame prove the same L2 sentences.

4.2 µ-arithmetic is equivalent to (Σ0
2)<ωdeterminacy

In this section we show that µ-arithmetic is equivalent to (Σ0
2)<ωdeterminacy.

This is a result from [10]. We first show that the µ-arithmetic proves (Σ0
2)<ωdeterminacy.
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Theorem 30. Let G be a (Σ0
2)<ωgame. Then, inside the µ-arithmetic, we

can uniformly define the set of winning positions for player I and strategies
SGI and SGII . Furthermore, if 〈〉 ∈ WG then SGI is a winning strategy for I in
G and if 〈〉 6∈ WG then SGII is a winning strategy for II in G.

Proof. The proof of this theorem is based on Wolfe’s proof of Σ0
2 determinacy.

It has the same structure as the proof of Claim 1 of Theorem 25. We omit
it here, it can be found on [10] with full details.

In the other direction, we embed the theory aame in (Σ0
2)<ωdeterminacy.

This is sufficient by theorem 29. We describe here only the beginning of the
proof, as it is the only part we need to analyse for our result.

Here we define a Σδ
n−1 game for each ∃n, using this games we then embed

aame inside (Σ0
2)<ωdeterminacy. For this we need some auxiliary games, but

the complexity of these will not matter for our theorem. Most of the proof
is the complicated induction in Theorem 32.

Definition 17. For each n ∈ ω, we define a game for ∃n.
We start with the game for ∃1 = ∃∨. Intuitively, ∃1x.ϕ(x) means

∀x0∀x1∀x2 · · ·
∨
n∈N

ϕ(〈x0, . . . , xn〉).

(Strictly it is of the form ∀f∃cϕ(f � n).) In this game II plays natural
numbers until I plays a break. If the sequence up to the break satisfies ϕ,
then I wins; otherwise, I loses. If I does not play a break, I also loses. This
is an open game as if I wins then it wins in finite time.

We define the game for ∀1 by exchanging the roles of I and II.
We now define the game for ∃2. It it starts by I choosing whether to play

a ∀1 game or not. The players play this game until II plays its first break.
Then I repeats this process. If I chooses to play infinitely many ∀1 games,
then I loses. If I stops after the nth game, I wins iff ϕ(〈s1, . . . , sn〉), where
si is the sequence played on the ith game.

As above, we define the game for ∀2 by switching the roles of the players
on the game for ∃2.

Now we define the game for ∃n for all n ∈ ω in the same way we defined
the game for ∃2. We just exchange the ∀1 games for ∀n−1 games. Again, the
game for ∀n is the game for ∃n with the player roles exchanged.
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We denote the rules of the game for ∃n by rulen and the rules for ∀n
by rulen. We use these expressions in game diagrams to represent a game
played along these rules.

Lemma 31. Let ϕ(x, α) be a (Σ0
2)<ωgame. Then (Σ0

2)<ωdeterminacy proves

∃Xϕ∀x((Xϕ)x is a winning strategy for one player in ϕ(x, α)).

Proof. Consider the game where I plays some x0 ∈ N then II decides whether
to play ϕ(x0, α) or ¬ϕ(x0, α) and whoever wins the game choosen by II wins
the whole game. I can not have a winning strategy in this game, so II
has a winning strategy by (Σ0

2)<ωdeterminacy. From this strategy we define
Xϕ.

s is winning position of the game for ∃nx.ϕ(x) iff s is a sequence of games

played according to rulen−1 and I wins ∃nx.ϕ(sax). The game for ∃nx.ϕ(sa

x) is also a (Σ0
2)<ω-game, so we can define

W n
ϕ = {s|(Xψ)s is a winning strategy for I}

where ψ = ∃nx.ϕ(sa x). We consider W n
ϕ to be a constant of our language.

We will show that W n
ϕ is the least fixed point of ϕ∃

n−1
(x, ~y,X, ~Y ) =

ϕ(s, ~y, ~Y ) ∨ ∀n−1s a 〈x〉 ∈ X. It suffices to show IGF (ϕ∃
n−1
,W n

ϕ ,�,≺) for
adequate �nϕ and ≺nϕ. We also define �nϕ and ≺nϕ via games. We omit this
definition.

Having defined all of this, Heinatsch and Möllerfeld[10] prove by induc-
tion:

Theorem 32. (Σ0
2)<ωdeterminacy proves IGF (ϕ∃

n−1
,W n

ϕ ,�nϕ,≺nϕ).

The proof of Theorem 32 is quite long, so we omit it here. We note that
the only place where we use determinacy in in is to define W n

ϕ using Lemma
31.

Corollary 33. (Σ0
2)<ωdeterminacy proves that if ϕ(x) is equivalent to a first-

order formula, then so are ∃nx.ϕ(x) and ∀nx.ϕ(x). Therefore we have com-
prehension for all La-formulas without second-order quantifiers and so we
can embed the aame theory into (Σ0

2)<ωdeterminacy.

Proof. We have that ∃nx.ϕ(x)↔ 〈〉 ∈W n
ϕ and ∀nx.ϕ(x)↔ 〈〉 6∈ W n

¬ϕ.
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Thus we can conclude that:

Theorem 34 (Heinatsch, Möllerfeld). µ-arithmetic is equivalent to (Σ0
2)<ωdeterminacy

over ACA0 over L2 sentences.

Open Question 3. About Bradfield’s transfinite extension of the µ-arithmetic:

• Can we formalize the tranfinite µ-arithmetic in Lµ?

• If we can formalize it, is it equivalent to the ∆0
2 determinacy over

ACA0?

Open Question 4. Can we formalize the weak µ-arithmetic in L2 and obtain
the corresponding results?

Both of these questions involve the problem of formalizing the transfinite
levels of the alternation hierarchy and being unable to use aame as in [10].

4.3 A finer analysis of Möllerfeld’s proof

As stated in Theorem 29 above, Möllerfeld[18] showed that the µ-arithmetic
and aame prove the same L2 sentences. With this theorem, we show that
(Σ0

2)<ωdeterminacy is equivalent to the µ-arithmetic. So we can use Möllerfeld’s
result of conservation og Π1

2-CA0 over (Σ0
2)<ωdeterminacy.

Furthermore, in his dissertation Möllerfeld defines hierarchies of theo-
ries µn-arithmetic and aamen and also establishes the equivalence of µn-
arithmetic and aamen for all n. We make explicit some steps of the above
proof so that we can relate these theories and the determinacy for each level
of the difference hierarchy.

We say set variables are µ0-terms. If ϕ( ~X) is a formula of L without

second order quantifiers and ~T is a sequence of µm-terms with m ≤ n then
ϕ(~T ) is a µn+1-formula. If ϕ(x,X) is an X-positive µn-formula, then µxX.ϕ
is a µn+1-term. The µn-arithmetic is the subsystem of µ-arithmetic with
axioms for least fixed points only for µn-terms.

We define aamen to be the subsystem of aame with axioms for the quan-
tifiers ∃m restricted to m ≤ n.

From a (simple) analysis of the proof of theorem 30, it follows that

Lemma 35. For all n ≥ 1, µn-arithmetic implies Σδ
n−1 determinacy.
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By analysing the winning conditions of the games for ∃n, we have that
they can be represented in the following pattern:

∃1 Σ0
1 Σδ

0

∃2 Σ0
2 Σδ

1

∃3 Σ0
2 ∧ Π0

2 Σδ
2

∃4 (Σ0
2 ∧ Π0

2) ∨ Σ0
2 Σδ

2 ∨ Σ0
2

∃5 (Σ0
2 ∧ Π0

2) ∨ (Σ0
2 ∧ Π0

2) Σδ
2 ∨ Σδ

2

∃6 (Σ0
2 ∧ Π0

2) ∨ (Σ0
2 ∧ Π0

2) ∨ Σ0
2 Σδ

2 ∨ Σδ
2 ∨ Σ0

2

∃7 (Σ0
2 ∧ Π0

2) ∨ (Σ0
2 ∧ Π0

2) ∨ (Σ0
2 ∧ Π0

2) Σδ
2 ∨ Σδ

2 ∨ Σδ
2

...
...

...

By induction we prove the following lemma:

Lemma 36. a) For all n ≥ 1,

Σδ
2n ∨ Σ0

2 = Σδ
2n+1 ∨ Σ0

2 = Σδ
2n+1,

Πδ
2n−1 ∨ Σ0

2 = Πδ
2n ∨ Σ0

2 = Πδ
2n.

b) For all n ≥ 3,
Σδ

2n−4 ∧ Σδ
2n−3 = Σδ

2n−2,

Πδ
2n−3 ∧ Πδ

2n−2 = Πδ
2n−1.

c) For all n,
Σδ

2n ∨ Σδ
2 = Σδ

2n+2

Using this lemma, we get

Lemma 37. For all n ≥ 1, Σδ
n−1 determinacy proves aamen.

Proof. On the proof of Theorem 32 for n, we only need Σδ
n−1 determinacy

for the required instance of Lemma 31.

In conclusion we get

Theorem 38. For all n ≥ 1,

µn-arithmetic ≡ Σδ
n−1 determinacy ≡ aamen

In [10], Heinatsch and Möllerfeld show that:
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Theorem 39. Π1
1-CA0 and (Σ0

2)<ωdeterminacy prove the same Π1
2 sentences.

This was in turn used in [13] to show:

Theorem 40 (Ko lodziejczyk, Michalewski). The following are equivalent
over Π1

2-comprehension:

• the complementation theorem for non-deterministic tree automata,

• the decidability of the Π1
3 fragment of MSO on the infinite binary tree,

• the positional determinacy of parity games, and

• the determinacy of (Σ0
2)<ωGale-Stewart games.

Open Question 5. If we can extend the formalization of µ-arithmetic to the
full case, can we obtain a conservation result parallel to Theorem 39? If the
answer for this question is yes, which kind of reverse mathematical results
can we obtain?
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